RESEARCH PAPER
Pyrolysis valorisation of fruit processing residues: energy and emission potential of apricot (Prunus armeniaca L.) and cornelian cherry (Cornus mas L.) seed biochar
 
More details
Hide details
1
Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, Faculty of Technology and Life Sciences, Rzeszów University, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
 
2
Faculty of Engineering, Institute of Agricultural Engineering, Transport and Bioenergetics, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
 
3
Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
 
4
Pomology, Nursery and Enology Department, University of Life Sciences in Lublin, Głęboka 28, 20-400 Lublin, Poland
 
5
Institute of Technology and Life Sciences, National Research Institute, Falenty, Hrabska 3, 05-090 Raszyn, Poland
 
 
Final revision date: 2025-09-17
 
 
Acceptance date: 2025-09-19
 
 
Publication date: 2025-11-04
 
 
Corresponding author
Bogdan Adam Saletnik   

Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, Faculty of Technology and Life Sciences, Rzeszow University, Ćwiklińskiej 2D, 35-601, Rzeszów, Poland
 
 
Int. Agrophys. 2026, 40(1): 55-66
 
HIGHLIGHTS
  • Pyrolysis produced biochar from fruit seeds with high energy (>31 MJ kg-1)
  • Emissions of CO, NOₓ, and SO₂ were greatly reduced by pyrolysis
  • Biochar supports circular economy and sustainable energy production
KEYWORDS
TOPICS
ABSTRACT
This study focuses on the use of post-production residues in the form of apricot and cornelian cherry seeds through pyrolysis, turning them into high-energy biochar. The experiments conducted reveal the potential of this waste as an alternative energy source. Pyrolysis at 500°C significantly improved their calorific value, reaching maximum values of 31.27 MJ kg-1 for apricot seeds and 31.26 MJ kg-1 for cornelian cherry seeds. Pyrolysis efficiency not only raised the energy value of the biomass, but also showed a significant reduction in emissions of harmful gases, such as CO, Nox, and SO2, making the combustion process greener. The research points to the potential of fruit processing residues in sustainable energy production, thereby meeting the goals of a circular economy. The research also complements existing knowledge in energy recovery technologies and the potential for effective waste management in the agri-food industry.
CONFLICT OF INTEREST
The Authors do not declare any conflict of interest.
REFERENCES (64)
1.
Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.K., Yang, J.E., et al., 2014. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and sorption of lead. Bioresour. Technol. 118, 536-544. https://doi.org/10.1016/j.bior....
 
2.
Altantzis, A.-I., Kallistridis, N.-C., Stavropoulos, G., Zabaniotou, A., 2022. Peach seeds pyrolysis integrated into a zero waste biorefinery: an experimental study. Circ. Econ. Sustain. 2, 351-382. https://doi.org/10.1007/s43615....
 
3.
Cárdenas-Aguiar, E., Méndez, A., Gascó, G., Lado, M., Paz-González, A., 2024. The effects of feedstock, pyrolysis temperature, and residence time on the properties and uses of biochar from broom and gorse wastes. Appl. Sci. 14, 4283. https://doi.org/10.3390/app141....
 
4.
Central Statistical Office (GUS), 2024. Final estimate of the main agricultural and horticultural crops in 2024. Retrieved September 5, 2025, https://stat.gov.pl/obszary-te....
 
5.
Eurostat, 2023. Energy statistics – 2023 edition.
 
6.
Eurostat, 2024. Agricultural production – crops. European Commission. Retrieved September 5, 2025, https://ec.europa.eu/eurostat/....
 
7.
Fabiańska, M.J., Ćmiel, S.R., Misz-Kennan, M., 2013. Biomarkers and aromatic hydrocarbons in bituminous coals of Upper Silesian Coal Basin: Example from 405 coal seam of the Zaleskie Beds (Poland). Int. J. Coal Geol. 107, 96-111. https://doi.org/10.1016/j.coal....
 
8.
Fadhil, A.B., 2017. Evaluation of apricot (Prunus armeniaca L.) seed kernel as a potential feedstock for the production of liquid bio-fuels and activated carbons. Energy Convers. Manag. 133, 307-317. https://doi.org/10.1016/j.enco....
 
9.
Fawzy, S., Osman, A.I., Yang, H., Doran, J., Rooney, D.W., 2021. Industrial biochar systems for atmospheric carbon removal: A review. Environ. Chem. Lett. 19, 2597-2617. https://doi.org/10.1007/s10311....
 
10.
Frišták, M., Soja, G., Soja, J., Pipíška, M., Hiller, E., Badalík, J., 2022. Physicochemical characterization of cherry pits-derived biochar. Materials 15, 408. https://doi.org/10.3390/ma1502....
 
11.
Gagliano A., Nocera F., Patania F., Bruno M., Scirè S., 2016. Kinetic of the pyrolysis process of peach and apri-cot pits by TGA and DTGA analysis. Int. J. Heat Technol. 34, 553-560. https://doi.org/10.18280/ijht.....
 
12.
Ganesapillai, M., Mehta, R., Tiwari, A., Sinha, A., Bakshi, H.S., Chellappa, V., et al., 2023. Waste to energy: A review of biochar production with emphasis on mathematical modelling and its applications. Heli-yon 9(4), e14873. https://doi.org/10.1016/j.heli....
 
13.
Gayen, D., Chatterjee, R., Roy, S., 2024. A review on environmental impacts of renewable energy for sustainable development. Int. J. Environ. Sci. Technol. 21, 5285-5310. https://doi.org/10.1007/s13762....
 
14.
Hayashi, M., Yamamoto, T., Takanashi, H., Hata, T., Tanaka, R., Sonoki, T., et al., 2014. Production of activated carbon and fungicidal oil from peach stone by two-stage process. Biomass Bioenergy 65, 1-9.
 
15.
Janković, B., Janković, M.M., Djurdjić, M., Stojanović, M., Janaćković, D., 2019. Physico-chemical characterization of carbonized apricot kernel shell as precursor for activated carbon preparation in clean technology utilization. J. Clean. Prod. 236, 117614. https://doi.org/10.1016/j.jcle....
 
16.
Jelonek, I., Jelonek, Z., Nocoń, A., 2018. Evaluation of fuel quality on the example of hard coal and wood pellets. Open-Pit Mining 3, 69-77.
 
17.
Jeyasubramanian, K., Thangagiri, B., Sakthivel, A., Raja, J.D., Seenivasan, S., Vallinayagam, P., et al., 2021. A complete review on biochar: production, property, multifaceted applications, interaction mechanism and computational approach. Fuel 292, 120243. https://doi.org/10.1016/j.fuel....
 
18.
Juszczak, M., 2014. Concentrations of carbon monoxide and nitrogen oxides from a 25 kW boiler supplied periodically and continuously with wood pellets. Chem. Process Eng. 35(2), 163-172. https://doi.org/10.2478/cpe-20....
 
19.
Kavindi, G.A.G., Tang, L., Sasaki, Y., 2025. Assessing GHG emission reduction in biomass-derived biochar production via slow pyrolysis: A cradle-to-gate LCA approach. Resour. Conserv. Recycl. 212, 107900. https://doi.org/10.1016/j.resc....
 
20.
Kasera, N., Kolar, P., Hall, S.G., 2022. Nitrogen-doped biochars as adsorbents for mitigation of heavy metals and organics from water: A review. Bioresour. Bioproc. 4, 17. https://doi.org/10.1007/s42773....
 
21.
Khan, S., Irshad, S., Mehmood, K., Hasnain, Z., Nawaz, M., Rais, A., et al., 2024. Biochar production and characteristics, its impacts on soil health, crop production, and yield enhancement: a review. Plants 13(2), 166. https://doi.org/10.3390/plants....
 
22.
Kluska, J., Ramotowski, J., 2024. Combustion characteristics of biochar from food processing waste. Arch. Thermodyn. 45, 45-51. https://doi.org/10.24425/ather....
 
23.
Kucharska, A.Z., Sokół-Łętowska, A., Piórecki, N., 2011. Morphological, physicochemical, and antioxidant char-acteristics of fruits of Polish varieties of Cornelian cherry (Cornus mas L.). Food Sci. Technol. Qual. 3(76), 78-89. https://doi.org/10.15193/zntj/....
 
24.
Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D., 2011. Biochar effects on soil biota – a review. Soil Biol. Biochem. 43, 1812-1836. https://doi.org/10.1016/j.soil....
 
25.
Lehmann, J., Joseph, S., 2015. Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: London, UK.
 
26.
Leng, L., Huang, H., Li, H., Li, J., Zhou, W., 2021. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 763, 144204. https://doi.org/10.1016/j.scit....
 
27.
Leong, Y.K., Chang, J.-S., 2022. Valorization of fruit wastes for circular bioeconomy: current advances, challenges, and opportunities. Bioresour. Technol. 359, 127459. https://doi.org/10.1016/j.bior....
 
28.
Luo, Q., Deng, Y., Li, Y., He Q., Wu H., Fang X., 2024. Effects of pyrolysis temperatures on the structural properties of straw biochar and its adsorption of Tris-(1-chloro-2-propyl) Phosphate. Sci. Rep. 14, 25711. https://doi.org/10.1038/s41598....
 
29.
Malagón-Romero, D.H., León-Caballero, N.D., Velasco-Peña, M.A., Arrubla-Vélez, J.P., Quintero-Naucil, M., Aristizábal-Marulanda, V., 2025. Pyrolysis of hass avocado (Persea americana) seeds: kinetic and economic analysis of bio-oil, gas, and biochar production. BioEnergy Res. 18, 33. https://doi.org/10.1007/s12155....
 
30.
Malińska, K., 2012. Biochar as a response to current environmental protection issues. Inż. Ochr. Środowiska 15(4), 387-403.
 
31.
Manić, N.G., Janković, B.B., Dodevski, V.M., Stojiljković, D.D., Jovanović, V.V., 2020. Multicomponent modelling kinetics and simultaneous thermal analysis of apricot kernel shell pyrolysis. J. Sustain. Dev. Energy Water Environ. Syst. 8, 4, 766-787. https://doi.org/10.13044/j.sde....
 
32.
Mignogna, D., Szabó, M., Ceci, P., Avino, P., 2024. Biomass energy and biofuels: perspective, potentials, and challenges in the energy transition. Sustainability 16, 7036. https://doi.org/10.3390/su1616....
 
33.
Nelissen, V., Ruysschaert, G., Müller-Stöver, D., Bodé, S., Cook J., Ronsse, F., et al., 2014. Short-term effect of feedstock and pyrolysis temperature on biochar characteristics, soil and crop response in temperate soils. Agronomy 4, 52-73. https://doi.org/10.3390/agrono....
 
34.
Pal, P., Singh, A.K., Srivastava, R.K., Rathore, S.S., Sahoo, U.K., Subudhi, S., et al., 2024. Circular bioeconomy in action: transforming food wastes into renewable food resources. Foods 13, 3007. https://doi.org/10.3390/foods1....
 
35.
PN-EN ISO 16948:2015-07, 2015. Solid biofuels – Determination of total carbon, hydrogen and nitrogen content. ISO: Geneva, Switzerland.
 
36.
PN-EN ISO 18122:2023-05, 2023. Solid biofuels – Determination of ash content. ISO: Geneva, Switzerland.
 
37.
PN-EN ISO 18123:2023, 2023. Solid biofuels – Determination of volatile matter. ISO: Geneva, Switzerland.
 
38.
PN-EN ISO 18125:2017-07, 2017. Solid biofuels – Determination of calorific value. ISO: Geneva, Switzerland.
 
39.
Pourasl, H.H., Vatankhah Barenji, R., Khojastehnezhad, V.M., 2023. Solar energy status in the world: a comprehensive review. Energy Rep. 10, 3474-3493. https://doi.org/10.1016/j.egyr....
 
40.
Qambrani, N.A., Rahman, M.M., Won, S., Shim, S., Ra, C., 2017. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renew. Sustain. Energy Rev. 79, 255-273. https://doi.org/10.1016/j.rser....
 
41.
Rathore, A.S., Singh, A., 2022. Biomass to fuels and chemicals: a review of enabling processes and technologies. J. Chem. Technol. Biotechnol. 97, 597-607. https://doi.org/10.1002/jctb.6....
 
42.
Song, S., Cong, P., Wang, C., Li, P., Liu, S., He, Z., et al., 2023. Properties of biochar obtained from tropical crop wastes under different pyrolysis temperatures and its application on acidic soil. Agronomy 13, 921. https://doi.org/10.3390/agrono....
 
43.
Rzeźnik, W., Mielcarek, P., Rzeźnik, I., 2016. Assessment of energetic potential of cherry stones in Poland. J. Res. Appl. Agric. Eng. 61, 84-87.
 
44.
Saletnik, B., Bajcar, M., Saletnik, A., Zaguła, G., Puchalski, C., 2021. Effect of the pyrolysis process applied to waste branches biomass from fruit trees on the calorific value of the biochar and dust explosivity. Energies 14, 4898. https://doi.org/10.3390/en1416....
 
45.
Saletnik, B., Bajcar, M., Zaguła, G., Czernicka, M., Puchalski, C., 2016. Influence of biochar and biomass ash applied as soil amendment on germination rate of Virginia mallow seeds (Sida hermaphrodita R.). Applied Sciences 5(3), 71-76. https://doi.org/10.3390/app916....
 
46.
Saletnik, B., Fiedur, M., Kwarciany, R., Zaguła, G., Bajcar, M., 2024. Pyrolysis as a method for processing of waste from production of cultivated tobacco (Nicotiana tabacum L.). Sustainability 16, 2749. https://doi.org/10.3390/su1607....
 
47.
Saletnik, B., Zaguła, G., Bajcar, M., Czernicka, M., Puchalski, C., 2019. Characteristics of biochar from oilseed residues and its potential use in agriculture. Materials 12, 402. https://doi.org/10.3390/app141....
 
48.
Sànchez, M.E., Lindao, E., Margaleff, D., Martínez, O., Morán, A., 2009. Pyrolysis of agricultural residues from rape and sunflowers: Production and characterization of bio-fuels and biochar for soil management. J. Anal. Appl. Pyrolysis 85, 142-144. https://doi.org/10.1016/j.jaap....
 
49.
Sejm of the Republic of Poland, 2015. Act of 20 February 2015 on Renewable Energy Sources. J. Laws, item 478. https://dziennikustaw.gov.pl/D....
 
50.
Sethuraman, S., Huynh, C.V., Kong, S.C., 2011. Producer gas composition and NOx emissions from a pilot-scale biomass gasification and combustion system using feedstock with controlled nitrogen content. Energy Fuels 25, 813-822. https://doi.org/10.1021/ef1013....
 
51.
Shen, Y., Linville, J.L., Ignacio-de, Leon, P.A., Schoene, R.P., Urgun-Demirtas, M., 2015. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar. J. Clean. Prod. 142, 4092-4100. https://doi.org/10.1016/j.jcle....
 
52.
Sher, F., Yaqoob, A., Saeed, F., Zhang, S., Jahan, Z., Klemeš, J.J., 2020. Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation. Energy 209, 118444. https://doi.org/10.1016/j.ener....
 
53.
Sieradzka, M., Jerzak, W., Mlonka-Mędrala, A., Marszałek A., Dudziak M., Kalemba-Rec, I., et al., 2025. Valorisation of food industry waste into high-performance biochar for environmental applications. Sci. Rep. 15, 26195. https://doi.org/10.1038/s41598....
 
54.
Singh, N., Soni, P., Kumar, R., Zaya, F., Kumari, A., Gupta, R., et al., 2025. Biochar application: a propitious approach to climate smart agriculture. Plant Arch. 25(1), 1479-1484.
 
55.
Solaun, K., Cerdá, E., 2017. Climate change impacts on renewable energy generation: a review of quantitative projections. Renew. Sustain. Energy Rev. 67, 170-182. https://doi.org/10.1016/j.rser....
 
56.
Szot, I., 2024. Cornelian cherry (Cornus mas L.). University of Agriculture Lublin – Wydawnictwo, Lublin, Poland, https://doi.org/10.24326/mon.2....
 
57.
Varkolu, M., Gundekari, S., Omvesh, Palla, V.C.S., Kumar, P., Bhattacharjee, S., Vinodkumar, T., 2025. Recent advances in biochar production, characterization, and environmental applications. Catalysts 15, 243. https://doi.org/10.3390/catal1....
 
58.
Venegas-Gómez, A., Gómez-Corzo, M., Macías-García, A., Carrasco-Amador, J.P., 2019. Charcoal obtained from cherry stones in different carbonization atmospheres. J. Environ. Chem. Eng. 8, 4, 103561. https://doi.org/10.1016/j.jece....
 
59.
Yanardağ, İ.H., 2025. Evaluation of malatya province soils for apricot cultivation. Harran J. Agric. Food Sci. 269-285. https://doi.org/10.29050/harra....
 
60.
Yogalakshmi, K.N., Poornima, Devi, T., Sivashanmugam, P., Kavitha, S., Yukesh Kannah, R., et al., 2022. Lignocellulosic biomass-based pyrolysis: a compre-hensive review. Chemosphere 286, 131824. https://doi.org/10.1016/j.chem....
 
61.
Yuan, J.H., Xu, R.K., Zhang, H., 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102, 3488-3497. https://doi.org/10.1016/j.bior....
 
62.
Zhang, Y., Gao, Y, Zhao, M., Feng, X., Wang, L., Yang, H., et al., 2021. Effects of torrefaction on the lignin of apricot shells and its catalytic conversion to aromatics. ACS Omega 6, 39, 25742-25748. https://doi.org/10.1021/acsome....
 
63.
Zhong, J.-W., Zhang, L., Zhan, X.-S., Liu, R., Dong, Q.-G., Zhang, M., et al., 2023. Pyrolysis temperature and nitrogen application rate influence the effects of biochar on greenhouse gas emission reduction and spring maize yield. J. Plant Nutr. Fertil. 29, 664-676.
 
64.
Zhou, Y., Hejazi, M., Smith, S., Edmonds, J., Li, H., Clarke, L., et al., 2015. A comprehensive view of global potential for hydro-generated electricity. Energy Environ. Sci. 8, 2622-263. https://doi.org/10.1039/c5ee00....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top