Sustainable laser technology for the control of organisms and microorganisms in agri-food systems: a review
More details
Hide details
Postgraduate Programme in Systems Engineering-Biophysical Systems, National Polytechnic Institute, Av. Instituto Politécnico Nacional, 07738, Ciudad de México, México
Physics Department, Autonomy University of Zacatecas, A.P. 580, Zacatecas, Mexico
Physics Department, Cinvestav-IPN, A.P. 14-740. 07360, Mexico City, Mexico
LIMMS, CNRS-IIS UMI 2820, University of Tokyo, Tokyo, 153-8505, Japan
UNIGRAS, CAT, FES-Cuautitlán, National Autonomous University of Mexico, Av. J. Jiménez Cantú s/n. 54729 Mexico
Final revision date: 2023-12-11
Acceptance date: 2023-12-22
Publication date: 2024-02-06
Corresponding author
Claudia Hernandez-Aguilar   

ESIME-ZACATENCO- SEPI- POSGRADO EN INGENIERIA DE SISTEMAS- GRUPO DE SISTEMAS BIOFISICOS, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional, C. P. 07738, Ciudad de México, Mexico
Int. Agrophys. 2024, 38(1): 87-119
  • The sustainable development of agri-food systems is possible with the use of the application of laser light technology.
  • The effectiveness of laser light treatments in agri-food systems reduces different pests.
  • There is a great control effect on microorganisms, viruses and fungi with different lasers of different wavelengths.
We review the literature concerning the effects of laser light on organisms (insects) and microorganisms (bacteria, viruses, fungi) present in agri-food systems. The evidence obtained shows that 1) Laser light is a sustainable technology that can be applied as a pesticide with the ability to annihilate and control insects. Higher annihilation rates are observed for more pigmented products, as determined by their thermal and optical properties. 2) The most frequently used laser beams to eliminate bacteria harmful to human health operate with a steady intensity in the visible domain (blue, green, and red light). 3) Laser beams are applied to control fungi (the most studied microorganism), viruses, as well as to increase plant resistance to them. Lasers with red beams, such as those emitted by He-Ne lasers, followed by diode lasers are most frequently reported in fungal control. Furthermore, antibacterial, and germicidal effects are increased by using photosensitizers. Finally, 4) laser light potentiates the metabolites and antimicrobial activity of some plants thereby improving their activity. Agri-food systems treated with laser beams have the potential to improve the quality of life of society.
The authors declare no conflict of interest.
Abawi G.S., and Widmer T.L., 2000. Impact of soil health management practices on soilborne pathogens, nematodes, and root diseases of vegetable crops. Appl. Soil Ecol., 15, 37-47.
Abdani Nasiri A., Mortazaeinezhad F., and Taheri R., 2018. Seed germination of medicinal sage is affected by gibberellic acid, magnetic field, and laser irradiation. Electromagn. Biol. Med., 37, 50-56.
Aladjadjiyan A., 2012. Physical factors for plant growth stimulation improve food quality. Food Production-Approaches, Challenges, Tasks, 270.
Aladjadjiyan A., 2007. The use of physical methods for plant growing stimulation in Bulgaria. J. Cent. Eur. Agric., 8, 369-380.
Aladjadjiyan A., 2018. The Role of Physics in Food Quality. BAOJ Biotech, 4, 056.
Ali L.M., Saleh S.S., Ahmed A.E.R.A.E.R., Hasan H.E.S., and Suliman A.E.R.E., 2020. Novel postharvest management using laser irradiation to maintain the quality of strawberry. J. Food Meas. Charact., 14, 3615-3624.
Ali L.M., Ahmed A.E.R.A.E.R., Hasan H.E.S., Suliman A.E.R.E., and Saleh S.S., 2022. Quality characteristics of strawberry fruit following a combined treatment of laser sterilization and guava leaf-based chitosan nanoparticle coating. Chem. Biol. Technol. Agric., 9, 1-13.
Abu-Elsaoud A.M., Abdulmajeed A. M., Alhaithloul H.A.S., and Soliman M. H., 2022. Role of Electromagnetic Radiation in Abiotic Stress Tolerance. Plant Abiotic Stress Physiology: Responses and Adaptations, 355.
Al-abedi H.F., Khalil I.I., and Alhasan D.A.H., 2023. In vitro effects of laser radiation on the antifungal activity of Eucalyptus spp. leaves extract by chloroform. Egypt J. Vet. Sci., 54, 677-688.
Abd El-Raouf A.E.R., Ahmed-PTPE L.W.E., and EEPP I. 2023. Effect of laser exposure time and rhizobium on germination of clover seeds. Agric. Eng. Int.: CIGR J., 25, 45-65.
Amaar M.I., and El-Refai S.A., 2015. Effect of freezing, high temperature and laser radiation for controlling khapra beetle, Trogoderma granarium (everts), on wheat grains. Egypt. J. Agric. Res., 93, 1069-1084.
Almuhayawi S.M., Almuhayawi M.S., Al Jaouni S.K., Selim S., and Hassan A.H., 2021. Effect of laser light on growth, physiology, accumulation of phytochemicals, and biological activities of sprouts of three brassica cultivars. J. Agric. Food Chem., 69, 6240-6250.
Asghar T., Jamil Y., Iqbal M., and Abbas M., 2016. Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages. J. Photochem. Photobiol. B: Biol., 165, 283-290.
Asghar T., Iqbal M., Jamil Y., Nisar J., and Shahid M., 2017. Comparison of HeNe laser and sinusoidal non-uniform magnetic field seed pre-sowing treatment effect on Glycine max (Var 90-I) germination, growth and yield. Journal of Photochemistry and Photobiology B: Biology, 166, 212-219.
Awaad H.A., 2021. Role of helium-neon laser in improving wheat grain yield potentiality. Mitigating Environmental Stresses for Agricultural Sustainability in Egypt, 391-408.
Balkhyour M.A., Tammar A.M., Summan A.S., and Hassan A.H., 2021. Enhancing biomass and productivity of coumarins and essential oil in ajwain (Trachyspermum ammi) sprouts via laser light treatment. Ind. Crops Prod., 170, 113837.
Banihashemi Z., MacDonald J.D., and Lagunas-Solar M.C., 2010. Effect of high-power monochromatic (pulsed UV laser) and low-power broadband UV radiation on Phytophthora spp. in irrigation water. Eur. J. Plant. Patho., 127, 229-238.
Barbier E.B., and Burgess J.C., 2017. The sustainable development goals and the systems approach to sustainability. Economics, 11, 20170028.
Barth J., 1987. Johann Wilhelm Ritter (1776-1810) and the discovery of ultraviolet irradiation 185 years ago. Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete, 38, 301-303. PMID: 3301744.
Bera K., Dutta P., and Sadhukhan S., 2022. Seed priming with non-ionizing physical agents: plant responses and underlying physiological mechanisms. Plant Cell Rep., 41, 53-73.
Bessis M., Gires F., Mayer G., and Normarski G., 1962. Irradiation des organites cellulaires á l'aide d'un laser á rubis. G. R. Acad. Sci., 225, 1010-1012.
Biermann F., Kanie N., and Kim R.E., 2017. Global governance by goal-setting: the novel approach of the UN Sustainable Development Goals. Curr. Opin. Env. Sust., 26, 26-31.
Bielozierskich M.P., and Zolotariewa T.A., 1981. Laser treatment of seeds (in Russian). Sacharnaja Swiowkla, 2, 32-33.
Blum H.F., 1941. Photodynamic action and diseases caused by light. Lighr, Reinhold Publishing Corp., New York.
Chavan P., Yadav R., Sharma P., and Jaiswal A.K., 2023. Laser light as an emerging method for sustainable food processing, packaging, and testing. Foods, 12, 2983.
Chee G., Shafel T., Park S. H., and Jun S., 2015. Pulsed‐CO2 Laser beam photothermal technology combined with conjugated gold nanoparticles for the selective elimination of surface Escherichia coli K12 from fresh fruits. J. Food Process. Eng., 38, 437-444.
Chernova G.V., and Vorsobina N.V., 2002. Effect of low intensity pulsed laser radiation of basic parameters of aging in Drosophila melanogaster. Radiats Biol Radioecol., 42, 331-6.
Chiabrando V., Garavaglia L., and Giacalone G., 2019. The postharvest quality of fresh sweet cherries and strawberries with an active packaging system. Foods, 8, 335.
Cholakov D., Uzunow N., and Meranzova R., 1996.The influence of pre-sowing laser and gamma irradiation upon the yield and quality of cucumber seeds. I Balkan Symposium on Vegetables and Potatoes, 462, 783-786.
Ćwintal M., and Sowa P., 2010. Influence of seed dressings and laser stimulation on red clover seeds germination. Annales UMCS, Agricultura, 65, 1-9.
Danyluk M.D., Friedrich L.M., Sood P., and Etxeberria E., 2013. Growth or penetration of Salmonella into citrus fruit is not facilitated by natural-light labels. Food Control, 34, 398-403.
Darré M., Vicente A.R., Cisneros-Zevallos L., and Artés-Hernández F., 2022. Postharvest ultraviolet radiation in fruit and vegetables: Applications and factors modulating its efficacy on bioactive compounds and microbial growth. Foods, 11, 653.
Dłużniewska J., Klimek-Kopyra A., Czech T., Dobrowolski J. W., and Dacewicz E., 2021. The use of coherent laser stimulation of seeds and a fungal inoculum to increase the productivity and health of soybean plants. Agronomy, 11, 1923.
Deschauz P., Guillot N., Fontanges R., and Pérés G., 1969. Action of the ruby laser on bacteria (in French). C. R. Soc. Biol., 162, 1376.
Dobrowolski J.W., Wachalewski T., Smyk B., Rózycki E., and Barabasz W., 1997. Experiments on the influence of laser light on some biological elements of the natural environment. Environ. Manag. Health, 8, 136-141.
Dobrowolski J.W., 1996. The influence of laser photostimulation of plants on bioaccumulation of elements. 7th Int. Symp. New Perspectives of Research Hardly Known Trace Elements, University of Horticulture and Food Industry, Budapest, Hungary.
Domínguez-Pacheco A., Hernández Aguilar C., Cruz Orea A., Carballo Carballo A., Zepeda Bautista R., and Martínez Ortiz E., 2010. Maize seed under the influence of electromagnetic field irradiation (in Spanish). Rev. Fitotec. Mex., 33, 183-188.
Domínguez-Pacheco A., Hernandez-Aguilar C., and Cruz-Orea A., 2022. Obtaining thermal images of creole corn by means of photoacoustic microscopy. J. Appl. Phys., 131, 215104.
Downes A., 1877. Researches on the effect of light upon bacteria and other organisms. Proc. Royal Society of London, 26, 488-500.
Downes A., and Blunt T.P., 1877. The influence of light upon the development of bacteria. Nature, 16, 218.
Downes A., and Blunt T.P., 1879. IV. On the influence of light upon protoplasm. Proc. Royal Society of London, 28, 199-212.
Downes A., 1886. I. On the action of sunlight on micro-organisms, &c., with a demonstration of the influence of diffused light. Proc. Royal Society of London, 40, 14-22.
Dziwulska-Hunek A., Kornarzynski K., Matwijczuk A., Pietruszewski S., and Szot B., 2009. Effect of laser and variable magnetic field simulation on amaranth seeds germination. Int. Agrophys., 23, 229-235.
Eichler J., and Lenz H., 1977. Laser applications in medicine and biology: a bibliography. Appl. Opt., 16, 27-45.
El-Adly A.A., Abada E.A., and Gharib F.A., 2007. Antibacterial effects of low power laser light and volatile oil of Fennel (Foeniculum vulgare var. dulce) on Gram-positive and Gram-negative bacteria. Int. J. Agric. Biol., 9, 22-26.
El-Raie A.E.S., Hassan H. E., Sidky M., and Abd-El-kreem M. T., 2017. Effet of sterilization on quality of caraway (Carum carvi, l.) fruits using laser and safe radiation waves. Misr J. Agric. Eng., 34, 1043-1064.
El-Raouf Ahmed A.E.R.A., El-Sayed Hasan H., and Suliman, A.E.R.E., 2023. Effect of laser irradiation and Rhizobium on growth parameters of clover. J. Nutr. Health Food. Eng., 13, 28-43.
Enwemeka C.S., Baker T.L., and Bumah V.V., 2021. The role of UV and blue light in photo-eradication of microorganisms. J. Photochem. Photobiol., 8, 100064.b.
Enwemeka C.S., 1988. Laser biostimulation of healing wounds: specific effects and mechanisms of action. J Orthop. Sports Phys. Ther., 9, 333-338.
Ferdosizadeh L., Sadat-Noori S.A., Zare A., and Syghafi S., 2013. Assessment of diode laser pretreatments on germination and yield of wheat (Triticum aestivum L.) under salinity stress. World J. Agric. Res., 1, 5-9.
Fernández-Valdez J.L., Iglesias-Andreu L.G., and Flores-López L.Y., 2023. Effect of helium-neon laser irradiations on the in vitro culture of Vanilla planifolia jacks. Vegetos, 1-9.
Floyd R.A., Chance B., and Devault D., 1971. Low temperature photo-induced reactions in green leaves and chloroplasts. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 226, 103-112.
Gaetani R., Lacotte V., Dufour V., Clavel A., Duport G., Gaget K., and Masenelli B., 2021. Sustainable laser-based technology for insect pest control. Sci. Rep., 11, 11068.
Gala J.L., Rebane O., Ambroise J., Babichenko S., Nyabi O., and Hance T., 2021. Acaricidal efficacy of ultraviolet-C irradiation of Tetranychus urticae adults and eggs using a pulsed krypton fluoride excimer laser. Parasites Vectors, 14, 1-8.
Geisler T., 1892. Zur frage über die wirkung des licht auf bakterien (in German). Centralblatt für Bakteriologie und Parasitenkunde, 11, 161-73.
Geweely N.S., 2011. Investigation of the optimum condition and antimicrobial activities of pigments from four potent pigment-producing fungal species. J. Life Sci., 5, 201.
Gonca S., Polat B., Ozay Y., Ozdemir S., Kucukkara I., Atmaca H., and Dizge N., 2023. Investigation of diode laser effect on the inactivation of selected Gram-negative bacteria, Grampositive bacteria and yeast and its disinfection on wastewater and natural milk. Environ. Technol., 44, 1238-1250.
González G.M.F., Ocampo-Alvarez H., Santacruz-Ruvalcaba F., Sánchez-Hernández C.V., Casarrubias-Castillo K., Becerril-Espinosa A., and Hernández-Herrera R.M., 2020. Physiological, ecological, and biochemical implications in tomato plants of two plant biostimulants: Arbuscular mycorrhizal fungi and seaweed extract. Frontiers Plant Science, 11, 999. https://doi:10.3389/fpls.2020.....
Govindaraj M., Masilamani P., Albert V.A., and Bhaskaran M., 2017. Effect of physical seed treatment on yield and quality of crops: A review. Agric. Rev., 38, 1-14.
Gregoraszczuk E., Dobrowolski J.W., and Galas J., 1983. Effect of low intensity laser beam on steroid dehydrogenase activity and steroid hormone production in cultured porcine granulosa cells. Folia Histochem. Cytochem., (Kraków). 21(2), 87-92.
Grzybowski A., and Pietrzak K., 2012. From patient to discoverer-Niels Ryberg Finsen (1860-1904)-the founder of phototherapy in dermatology. Clin Dermatol., 30, 451-455.
Hamrick P.E., and Cleary S.F., 1968. Laser-induced acoustic breakage of tobacco mosaic virus. Nature, 220, 909-910.
Hernandez-Aguilar C., 2005. Effects of the low intensity laser irradiation on the mycoflora content in corn seeds. Proc. 1st Int. Conf. Applied Electromagnetics, June 19-23, Santiago de Cuba, Cuba.
Hernández-Aguilar C., Cruz-Orea A., Ivanov R., Martínez E.S.M., and Michtchenko A., 2005. Photoacoustic spectroscopy applied to the study of the influence of laser irradiation on corn seeds. Proc J. de Physique IV, EDP Sciences, 125, 853-855.
Hernández-Aguilar C., Carballo C., Ramírez E.M., and Ortíz E.J.M., 2005. Effect of laser light on maize seed vigor. 49th Annual Meeting Int. Society for the Systems Sciences, ISSS, 425-433.
Hernandez-Aguilar C., Carballo C.A., Artola A., and Michtchenko A., 2006. Laser irradiation effects on maize seed field performance. Seed Sci. Technol., 34, 193-197.
Hernández-Aguilar C., Mezzalama M., Lozano N., Cruz-Orea A., Martínez E., Ivanov R., and Domínguez-Pacheco A., 2008. Optical absorption coefficient of laser irradiated wheat seeds determined by photoacoustic spectroscopy. Eur. Phys. J. Spec. Top., 153, 519-522.
Hernandez-Aguilar C., Dominguez P.A., Cruz O.A., Ivanov R., Carballo C.A., and Zepeda B.R., 2010. Laser in agriculture. Int. Agrophys., 24, 407-422.
Hernandez-Aguilar C., Liliana R.P.C., Arturo D.P.F., María H.A.A., Alfredo C.O., and Aquiles C.C., 2011a. Laser light on the mycoflora content in maize seeds. Afr. J. Biotechnol., 10, 9280-9288.
Hernandez-Aguilar C., Cruz-Orea A., Ivanov R., Domínguez A., Carballo A., Moreno I., and Rico R., 2011b. The optical absorption coefficient of maize seeds investigated by photoacoustic spectroscopy. Food Biophys., 6, 481-486.
Hernandez-Aguilar C., Domínguez Pacheco F.A., Cruz Orea A., and Ivanov Tsonchev R., 2015a. Thermal effects of laser irradiation on maize seeds. Int. Agrophys., 29, 147-156.
Hernandez-Aguilar C., Domínguez-Pacheco A., and Cruz-Orea A., 2015b. Thermal changes of maize seed by laser irradiation. Int. J. Thermophys., 36, 2401-2409.
Hernández-Aguilar C., Domínguez-Pacheco A., Cruz-Orea A., Podleśna A., Ivanov R., Carballo Carballo, A., and López-bonilla J.L., 2016. Laser biostimulation in seeds and plants (in Spanish). Gayana Bot., 73, 132-149.
Hernández-Aguilar C., Domínguez-Pacheco A., Cruz-Orea A., and Ivanov R., 2019. Photoacoustic spectroscopy in the optical characterization of foodstuff: A review. J. Spectrosc., 2019.
Hernandez-Aguilar C., Domínguez-Pacheco A., Martínez-Ortiz E.J., Ivanov R., Bonilla J.L.L., Cruz-Orea A., and Ordonez-Miranda J., 2020. Evolution and characteristics of the transdisciplinary perspective in research: a literature review. Transdiscipl. J. Eng. Sci., 11, 58-188.
Hernández-Aguilar C., Lopez F.S., and Pacheco F.A.D., 2022. Sustainable development goals index: An analysis (2000-2022). Transdiscipl. J. Eng. Sci., SP-1, 111-128.
Hernandez-Aguilar C., Dominguez-Pacheco A., Dominguez-Hernandez E., Tsonchev R.I., Valderrama-Bravo M.D.C., and Alvarado-Noguez M.L., 2023. Effects of UV-C light and Spirulina maxima seed conditioning on the germination and the physical and nutraceutical properties of lentils (Lens culinaris). Int. Agrophys., 37, 15-26.
Herschel W., 1800. XIV. Experiments on the refrangibility of the invisible rays of the sun. Philosophical Trans. Royal Society of London, (90), 284-292.
Hoskin M., 2008. Nebulae, star clusters and the Milky Way: From Galileo to William Herschel. J. Hist. Astron., 39, 363-396.
Hobday R.A., and Dancer S.J., 2013. Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives. J. Hosp. Infect., 84, 271-282.
Hockberger P.E., 2000. The discovery of the damaging effect of sunlight on bacteria. J. Photochem. Photobiol. B, Biol., 58, 185-191.
Hockberger P.E., 2002. A history of ultraviolet photobiology for humans, animals and microorganisms. Photochemistry and Photobiology, 76, 561-579.<0561:AHOUPF>2.0.CO;2.
Jamil Y., Perveen R., Ashraf M., Ali Q., Iqbal M., and Ahmad M.R., 2013. He-Ne laser-induced changes in germination, thermodynamic parameters, internal energy, enzyme activities and physiological attributes of wheat during germination and early growth. Laser Phys. Lett., 10, 1-13.
Janicki K., Dobrowolski J., and Kraśnicki K., 1987. Correlation between contamination of the rural environment with mercury and occurrence of leukaemia in men and cattle. Chemosphere, 16, 253-257.
Janowski T., 1890. On the biology of typhoid bacilli. The effect of our understanding of the behaviour of these organisms, they Sonnenlichts (in German). Centralblatt fur Bakteriologie und Parasitenkunde, 8, 167-172.
Jović F., Nenadić K., Drezner G., Kovačević J., and Dvojković K., 2006. Visible wavelength laser beam treatment of wheat grain. Proc. 19th Meeting on Mathematical Modelling of Materials Processing with Lasers (M4PL19), 18-20.
Kasahara I., Carrasco V., and Aguilar L., 2015. Inactivation of Escherichia coli in goat milk using pulsed ultraviolet light. J. Food Eng., 152, 43-49.
Keller M.D., Leahy D.J., Norton B.J., Johanson R., Mullen E.R., Marvit M., and Makagon A., 2016. Laser induced mortality of Anopheles stephensi mosquitoes. Sci. Rep., 6, 20936.
Kirkland K. 2007. Light and optics. (New York: Facts on File, Inc.).
Klimek-Kopyra A., Dłużniewska J., Ślizowska A., and Dobrowolski J.W., 2020. Impact of coherent laser irradiation on germination and mycoflora of soybean seeds-Innovative and prospective seed quality management. Agriculture, 10, 314.
Korn M. and Chel'nyĭ, A.A., 1970. Effect of laser microirradiation of filamentous forms of Eschericha coli. Mikrobiolgija, 39, 944-1073.
Kohmura Y., Igami N., Tatsuno I., Hasegawa T., and Matsumoto T., 2020. Transient photothermal inactivation of Escherichia coli stained with visible dyes by using a nanosecond pulsed laser. Sci. Rep., 10, 17805.
Krawiec M., and Dziwulska-Hunek A., 2018. Effect of seed stimulation with laser light on emergence and yielding of scaly pea (Pisum sativum L. var. pachylobum Beck.). Ann. Hortic., 28, 19-27.
Lagunas-Solar M.C., Piña C., MacDonald J.D., and Bolkan L., 2006. Development of pulsed UV light processes for surface fungal disinfection of fresh fruits. J. Food Protect., 69, 376-384.
Li X., and Farid M., 2016. A review on recent development in non-conventional food sterilization technologies. Food Eng. Rev., 182, 33-45.
Li Y., Xiang Y., Yang Z., Han X., Lin J., and Hu Z., 2021. A laser irradiation method for controlling Pieris rapae larvae. Appl. Sci., 11, 9533.
MacMillan J.D., Maxwell W.A., and Chichester C.O., 1966. Lethal photosensitization of microorganisms with light from a continuous‐wave gas laser. Photochemistry photobiology, 5, 555-565.
Maktabi S., Watson I., and Parton R., 2011. Synergistic effect of UV, laser and microwave radiation or conventional heating on E. coli and on some spoilage and pathogenic bacteria. Innov. Food Sci. Emerg. Technol., 12, 129-134.
Mandal S.K., and Maity A., 2013. Applications of laser in agriculture: a critical review. Elixir Mech. Eng., 63, 18740-18745.
Mahdi E.M., Lafta S.M., and Hamad A.M., 2021. The Effect of Diode Laser on The Life and Appearance of White Ant (Psammotermes hypostoma). Karbala Int. J. Mod. Sci., 7, 13.
Mahendran R., Ramanan K.R., Barba F.J., Lorenzo J.M., López-Fernández O., Munekata P.E., and Tiwari B.K., 2019. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci. Technol., 88, 67-79.
Maslova M.V., Grosheva E.V., Budagovsky A.V., and Budagovskaya O.N., 2020. Bacteria as agents of biocontrol of phytopathogens after laser stimulation and of their metabolites' impact on plants. BIO Web of Conf. (Vol. 23, p. 02002). EDP Sciences.
McGuff P.E. and Bell E J., 1966. The effect of laser energy radiation on bacteria,16, 191-4.
Mester E., Szende B., and Tota J.G., 1967. Effect of laser on hair growth of mice. Kiserl Orvostud, 19, 628-631.
Meng J.Y., Zhang C.Y., Zhu F., Wang, X.P., and Lei C.L., 2009. Ultraviolet light-induced oxidative stress: Effects on antioxidant response of Helicoverpa armigera adults. J. Insect. Physiol. 55, 588-592.
Moghissi K., and Allison R.R., 2023. A narrative history of photodynamic therapy. In: Nanomaterials for Photodynamic Therapy, 1-39. Woodhead Publishing.
Moller-Sorensen I.M., and Brade A.E., 1995. Niels Finsen's treatment of tuberculosis of the skin, Dan Medicinhist Arbog, 228-299.
Moustafa M., Helal M.R., and EI-Dakar H.A.M., 2004. Effect of laser irradiation on seed borne fungi of rice. Int. J. Plant. Prot., 29, 1495-1503.
Meulemans C.C.E., 1986. The basic principles of UV-sterilization of water. Ozone+ Ultraviolet Water Treatment, Aquatec Amsterdam, Paris: International Ozone Association.
Mullen E.R., Rutschman P., Pegram N., Patt J.M., and Adamczyk J.J., 2016. Laser system for identification, tracking, and control of flying insects. Optics Express, 24, 11828-11838.
Musayev M.A., 1971. The mutagenic effect of laser radiation on tomatoes. Tsitol. Genet., 5, 207.
Nadimi M., Sun D.W., and Paliwal J., 2021. Recent applications of novel laser techniques for enhancing agricultural production. Laser Physics, 31, 053001.
Nadimi M., Loewen G., Bhowmik P., and Paliwal J., 2022. Effect of laser biostimulation on germination of sub-optimally stored flaxseeds (Linum usitatissimum). Sustainability, 14, 12183.
Nair S., Hu Y.Y., Su C.C., Chien M.J., and Chen S.J., 2023. Effective laser fly control with modulated uv-a light trapping for mushroom fungus gnats (Diptera: Sciaridae). Agriculture, 13, 1574.
Nenadić K., Jović F., and Pliestić, S., 2008. An investigation of automatic treatment of seeds with low power laser beam. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 49, 127-134.
Okla M.K., Rubnawaz S., Dawoud T.M., Al-Amri S., El-Tayeb M.A., Abdel-Maksoud M.A., and AbdElgawad H., 2022. Laser light treatment improves the mineral composition, essential oil production and antimicrobial activity of mycorrhizal treated Pelargonium graveolens. Molecules, 27, 1752, 1-13.
Ouf S.A., and Abdel-Hady N.F., 1999. Influence of He-Ne laser irradiation of soybean seeds on seed myclofora, growth, nodulation, and resistance to Fusarium solani. Folia Microbiol., 44, 388-396.
Patwardhan B., 1990. Ayurveda: The designer medicine. Indian drugs, 37, 213-227.
Paleg L.G., and Aspinall D.D., 1970. Field control of plant growth and development through the laser activation of phytochrome. Nature, 5275, 970-973. 228970a0.
Pérez Reyes M.C., Hernandez-Aguilar C., Domínguez-Pacheco A., Cruz-Orea A., and Moreno Martínez E., 2015. The optical absorption coefficient of barley seeds investigated by photoacoustic spectroscopy and their effects by laser biostimulation. Int. J. Thermophys., 36, 2389-2400.
Poulet P., Chambron J., and Unterreiner R., 1980. Quantitative photoacoustic spectroscopy applied to thermally thick samples. J. Appl. Phys., 51, 1738-1742. 1.327785.
Qaim M., 2020. Role of new plant breeding technologies for food security and sustainable agricultural development. Appl. Econ. Perspect. Policy., 42, 129-150.
Rassam Y.Z., 2010. The Effect of laser light on virulence factors and antibiotic susceptibility of locally isolated Pseudomonas aeruginosa. J. Appl. Sci. Res., 6, 1298-302.
Rassam Y.Z., Mashhadani F.A.A., and Boya A.F., 2012. Laser treatment may enhance growth and resistance to fungal infection of hard wheat seeds. J. Agric. Vet. Sci. (IOSR-JAVS), 2, 47-51.
Rashid S.N., and Mahdi E.M., 2018. Study the effect of Nd: YAG laser on Cowpea Beetle (Callosobruchus maculates (Fab)). In IOP Conference Series: Materials Sci. Eng., 454, 012108.
Rashid S.N., Mahdi E.M., and Jasim A.S., 2021. Effect of diode laser on ants (Camponotus consobrinus). Materials Today: Proc., 42, 1980-1985. 2020.12.245.
Romero-Galindo R., Hernandez-Aguilar C., Domínguez-Pacheco A., Godina-Nava J.J., and Tsonchev R.I., 2021. Biophysical methods used to generate tolerance to drought stress in seeds and plants: A review. Int. Agrophys., 35, 389-410.
Reed N.G., 2010. The history of ultraviolet germicidal irradiation for air disinfection. Public Health Reports, 125, 15-27.
Rosencwaig A., and Gersho A., 1976. Theory of the photoacoustic effect with solids. J. Appl. Phys., 47, 64-69.
Saghafi S., Penjweini R., Becker K., Kratky K.W., and Dodt H.U., 2010. Investigating the effects of laser beams (532 and 660 nm) in annihilation of pistachio mould fungus using spectrophotometry analysis. J. Eur. Opt. Soc., 5, 10033s1- 10033s-8.
Saks N., and Roth C., 1963. Ruby laser as a microsurgical instrument. Science 141, 46-47. 141.3575.46.
Sánchez-Hernandez G., Hernandez-Aguilar C., Domínguez-Pacheco A., Cruz-Orea A., Pérez-Reyes M.C.J., and Martínez O.J.E., 2015. The optical absorption coefficient of bean seeds investigated using photoacoustic spectroscopy. Int. J. Thermophys., 36, 835-843.
Shabir I., Khan S., Dar A.H., Dash K.K., Shams R., Altaf A., Pandey V.K., 2022. Laser beam technology interventions in processing, packaging, and quality evaluation of foods. Food, 8, 100062. 2022.100062.
Shelygina S.N., Kompanets V.O., Saraeva I.N., Tolordava E.R., Kudryashov S.I., Rupasov A.E., and Ionin A.A., 2021. Laser-based inactivation of pathogenic microorganisms. J. Physics: Conference Series, 2058, 012022.
Smith H., 2000. Phytochromes and light signal perception by plants – an emerging synthesis. Nature, 407, 585-591.
Smith W.L., Lagunas-Solar M.C., and Cullor J.S., 2002. Use of pulsed ultraviolet laser light for the cold pasteurization of bovine milk. J. Food Prot., 65, 1480-1482.
Sood P., Ference C., Narciso J., and Etxeberria E., 2008. Effects of laser labeling on the quality of tangerines during storage. Proc. Florida State Horticultural Society. Fla. State Hort. Soc., 121, 297-300.
Starzycki M., Rybiński W., Starzycka E., and Pszczoła J., 2005. Laser light as a physical factor enhancing rapeseed resistance to blackleg disease. Acta Agrophysica, 5, 441-446.
Suhem K., Matan N., Matan N., Danworaphong S., and Aewsiri T., 2015. Improvement of the antifungal activity of Litsea cubeba vapor by using a helium-neon (He-Ne) laser against Aspergillus flavus on brown rice snack bars. Int. J. Food Microbiol., 215, 157-160.
Svyatchenko V.A., Nikonov S.D., Mayorov A.P., Gelfond M.L., and Loktev V.B., 2021. Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin. Photodiagnosis Photodyn Ther., 33, 102112.
Tatsuno I., Niimi Y., Tomita M., Terashima H., Hasegawa T., and Matsumoto T., 2021. Mechanism of transient photothermal inactivation of bacteria using a wavelength-tunable nanosecond pulsed laser. Sci. Rep., 11, 22310.
Teng X., Zhang M., and Mujumdar A.S., 2021. Potential application of laser technology in food processing. Trends Food Sci. Technol., 118, 711-722.
Ubaid J.M., 2016. Using laser energy for controlling some stored product insects. Mag. Al-Kufa Univ. Biol., 35-38.
Usmanov P.D., Startsev G.A., Shabalov V.V., and Nasyrov I.S., 1970. Mutagenic effect of laser radiation on the seeds of Arabidopsis thaliana (L.) Heynh. Doklady Akademiinauk SSSR, 193, 455-457.
Uthairatanakij A., Teixeira da Silva J.A., and Obsuwan K., 2007. Chitosan for improving orchid production and quality. Orchid Sci. Biotechnol., 1, 1-5.
Ward H.M., 1893. V. Experiments on the action of light on Bacillus anthracis. Proc. Royal Society of London, 52, 315-320.
Ward H.M., 1894a. XX. The action of light on bacteria. III. Philosophical Transactions of the Royal Society of London. (B.), (185), 961-986.
Ward H.M., 1894b. II. The action of light on bacteria. III. Proc. Royal Society of London, 54(326-330), 472-475.
Watson I.A., Tan B.K., Armstrong G., Stewart-Tull D., and Marshall R., 2007. Shelf-life extension of carrots and potatoes: A comparison of H2O2, laser, UV, and microwave treatments. In IOA Conference and Exhibition Valencia, 29-31.
Watson I., and Stewart-Tull D., 1999. Laser inactivation for the food industry. In: European Federation of Food Science Technology (EFFoST), Tampere, Finland, 22-24 Nov 1999.
Wen B., Cui S., Suo X., and Supapvanich S., 2023. Stress response of fresh-cut potatoes to laser irradiation before processing can prevent discoloration and maintain overall quality. Postharvest Biol. Technol., 197, 112213.
Wilczek M., Koper R., Cwintal M., and Kornillowicz-Kowalska T., 2004. Germination capacity and the health status of red clover seeds following laser treatment. Int. Agrophysics., 18, 289-293.
Wilczek M., Koper R., Cwintal M., and Kornillowicz-Kowalska T., 2005. Germination capacity and health status of hybrid alfalfa seeds after laser treatment. Int. Agrophysics., 19, 257-261.
Wilde W.H.A., Parr W.H., and McPeak D.W., 1969. Seeds bask in laser light. Laser Focus, 5, 41-42.
Wilde W.H.A., 1965. Laser effects on two insects. Can. Entomol. 97, 88-92.
Wilde W.H.A., 1967. Laser effects on some phytophagous arthropods and their hosts. Ann. Entomol. Soc. Am., 60, 204-207.
Wright H.B., and Cairns W.L., 1998. Ultraviolet light. Trojan Technologies Inc, 3020.
Vasilevski G., 2003. Perspectives of the application of biophysical methods in sustainable agriculture. Bulg. J. Plant Physiol., 29, 179-186.
Zaidem A., Silva, L. Ferreira A., Carvalho M., Ragni M., Abegão L., and Pinheiro P., 2023. New biocompatible technique based on the use of a laser to control the Whitefly Bemisia tabaci. Photonics, 10, 636.
Zrig A., Najar B., Magdy Korany S., Hassan A.H., Alsherif E.A., Ali Shah A., and Abd Elgawad H., 2022. The interaction effect of laser irradiation and 6-benzylaminopurine improves the chemical composition and biological activities of linseed (Linum usitatissimum) sprouts. Biology, 11, 1398.
Journals System - logo
Scroll to top