RESEARCH PAPER
Variability of edaphic parameters in the area affected by a municipal waste landfill
 
More details
Hide details
1
Department of Soil Science and Soil Protection, Bydgoszcz University of Science and Technology, Bernardyńska 6, 85-029 Bydgoszcz, Poland
 
2
Department of Soil Science and Landscape Ecology, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
 
3
Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology, Bernardyńska 6, 85-029 Bydgoszcz, Poland
 
4
Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
 
 
Final revision date: 2025-01-07
 
 
Acceptance date: 2025-01-24
 
 
Publication date: 2025-05-08
 
 
Corresponding author
Agata Bartkowiak   

Department of Soil Science and Soil Protection, Bydgoszcz University of Science and Technology, Bernardyńska, 85-029, Bydgoszcz, Poland
 
 
Int. Agrophys. 2025, 39(3): 269-285
 
HIGHLIGHTS
  • Soil properties depend on the local conditions at the landfill
  • The average content of total forms was in the order Cd
  • The content of heavy metals did not cause enzymatic inhibition of the soil
KEYWORDS
TOPICS
ABSTRACT
Monitoring the soil quality in municipal landfill sites is critical. It poses challenges because of the diversity of municipal waste, soil properties, and hydrogeological conditions at a landfill. This study aimed to assess the variability of soil properties in the zone of impact of a municipal waste landfill in the city of Bydgoszcz (Poland, Central Europe). The soil material was taken from ten sampling points, including the control sample located in a nearby forest that was not influenced by the municipal waste landfill. The basic physicochemical properties of soils, the content of selected heavy metals and enzymatic activities were determined. To evaluate the risk resulting from the toxicity of heavy metals in the soils, the contamination factor (CF), enrichment factor (EF), Nemerow’s pollution index (PN) and pollutant load index (PLI) were calculated. Additionally, the soil quality indices, i.e. the geometric mean of enzyme activities (GMea), total enzyme activity index (TEI), and metabolic activity index (MAI), were calculated. The study showed that the heavy metal content in the soils was acceptable, with the following order of concentration: Cd < Pb < Ni < Cu < Cr < Zn. Some enrichment was noted and the enzymatic analysis indicated that anthropogenic activities significantly influenced the activity of soil dehydrogenases and phosphatases. The findings highlight the complexity of soil dynamics in such areas and emphasise the importance of long-term monitoring.
ACKNOWLEDGEMENTS
We would like to thank Dr. Adam Michalski from the Laboratory for Environmental Analysis, Faculty of Earth Science and Spatial Management, Nicolaus Copernicus University in Toruń, Poland, for his help in the laboratory.
FUNDING
Bydgoszcz University of Science and Technology, Faculty of Agriculture and Biotechnology, Laboratory of Soil Science and Biochemistry (grant BN-WRiB-2/2022). University of Warmia and Mazury in Olsztyn. Faculty of Agriculture and Forestry, Department of Soil Science and Microbiology (grant 30.610.005-110). Nicolaus Copernicus University in Toruń (1752/2020 IDUB Urban Soil Environment).
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES (98)
1.
Adam, M., Ibrahim, I., Sulieman, M., Zeraatpisheh, M., Mishra, G., Brevik, E.C., 2021. Predicting soil cation exchange capacity in entisols with divergent textural classes: the case of northern Sudan soils. Air Soil Water Res. 14. https://doi.org/10.1177/117862....
 
2.
Agbeshiea, A.A., Adjei, R., Anokyec, J., Banunle, A., 2020. Municipal waste dumpsite: Impact on soil properties and heavy metal concentrations, Sunyani, Ghana. Scientific Afr. 8, 1-10. https://doi.org/10.1016/j.scia....
 
3.
Al-Juboury, A., 2009. Palygorskite in Miocene rocks of northern Iraq: environmental and geochemical indicators. Acta Geol. Pol. 59, 269-282.
 
4.
Amos-Tautua, B.M.W., Onigbinde, A.O., Ere, D., 2014. Assessment of some heavy metals and physicochemical properties in surface soils of municipal open waste dumpsite in Yenagoa, Nigeria. Afr. J. Environ. Sci. Technol. 8, 41- 47. https://doi.org/10.5897/AJEST2....
 
5.
An, N., Zhou, C.H., Zhuang, X.Y., Tong, D.S., Yu, W.H., 2015. Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Appl. Clay Sci. 114, 283-296. https://doi.org/10.1016/j.clay....
 
6.
Anikwe, M.A.N., Nwobodo, K.C.A., 2002. Long term effect of municipal waste disposal on soil properties and productivity of sites used for urban agriculture in Abakaliki, Nigeria. Bioresour Technol. 83(3), 241-250. https://doi.org/10.1016/S0960-....
 
7.
Aponte, H., Meli, P., Butler, B., Paolini, J., Matus, F., Merino, C., et al., 2020. Meta-analysis of heavy metal effects on soil enzyme activities. Sci. Total Environ. 737, 139744. https://doi.org/10.1016/j.scit....
 
8.
Aryampa, S., Maheshwari, B., Sabiiti, E.N., Namuddu, S., Bukenya, B., Bateganya, N.L., 2023. Understanding the impact of waste disposal sites on soil quality for agricultural production: A case study of the Kiteezi landfill, Uganda. Environ. Qual. Manag. 32(3), 325-334. https://doi.org/10.1002/tqem.2....
 
9.
Aziza, K., Naïma, E.G., Naoual, R., Khalid, D., Mustapha, I., Wifak, B., 2020. Leaching of heavy metals and enzymatic activities in un-inoculated and inoculated soils with yeast strains. Soil Sediment Contam. Int. J. 29, 860-879. http://dx.doi.org/10.1080/1532....
 
10.
Bakis, R., Tuncan, A., 2011. An investigation of heavy metal and migration through groundwater from the landfill area of Eskisehir in Turkey. Environ. Monit. Assess. 176, 87-98. https://doi.org/10.1007/s10661....
 
11.
Baldrian, P., Šnajdr, J., 2011. Lignocellulose-degrading enzymes in soil. W: Shukla G. Varma A. (Eds). Soil enzymology. Springer-Verlag. Berlin. 167-186. https://doi.org/10.1007/978-3-....
 
12.
Bartha, R., Bordeleau, L., 1969. Cell-free peroxidases in soil. Soil Biol. Biochem. 1(2), 139-143. http://doi.org/10.1016/0038-07....
 
13.
Bartkowiak, A., Lemanowicz, J., Hulisz, P., 2017. Ecological risk assessment of heavy metals in salt-affected soils in the Natura 2000 area (Ciechocinek. north-central Poland). Environ. Sci. Pollut. Res. Int. 24(35), 27175-27187. http://doi.org/10.1007/s11356-....
 
14.
Bartkowiak, A., Lemanowicz, J., Rydlewska, M., Sowiński, P., 2024. The impact of proximity to road traffic on heavy metal accumulation and enzyme activity in urban soils and dandelion. Sustainability 16, 812. https://doi.org/10.3390/su1602....
 
15.
Beinabaj, S.M.H., Heydariyan, H., Aleii, H.M., Hosseinzadeh, A., 2023. Concentration of heavy metals in leachate soil and plants in Tehran’s landfill: Investigation of the effect of landfill age on the intensity of pollution. Heliyon 9(1), e13017. https://doi.org/10.1016/j.heli....
 
16.
Bhutiani, R., Kulkarni, D.B., Khanna, D.R., Gautam, A., 2017. Geochemical distribution and environmental risk assessment of heavy metals in groundwater of an industrial area and its surroundings, Haridwar, India. Energy Ecol. Environ. 2(2), 155-167. https://doi.org/10.1007/s40974....
 
17.
Bielińska, E.J., Kołodziej, B., Sugier, D., 2013. Relationship between organic carbon content and the activity of selected enzymes in urban soils. J. Geochem. Explor. 129, 52-56. https://doi.org/10.1016/j.gexp....
 
18.
Baziene, K., Tetsman, I., Albrektiene, R., 2020. Level of pollution on surrounding environment from landfill aftercare. Int. J. Environ. Res. Public Health 17, 2007. http://dx.doi.org/10.3390/ijer....
 
19.
Datta, A., Gujre, N., Gupta, D., Agnihotri, R., Mitra, S., 2021. Application of enzymes as a diagnostic tool for soils as affected by municipal solid wastes. J. Environ. Manag. 286, 112169. https://doi.org/10.1016/j.jenv....
 
20.
Dinesh, R., Ramanathan, G., Singh, H., 1995. Influence of chloride and sulphate ions on soil enzymes. J. Agron. Crop Sci. 175, 129-133. https://doi.org/10.1111/j.1439....
 
21.
Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (OJ L 312, 22.11.2008, 3-30). http://data.europa.eu/eli/dir/....
 
22.
Elanga, D., Devi, K.D., Jeyabalakrishnan, H.K., Rajendran, K., Haridas,. V.K.T., Dharmaraj, D., et al., 2022. Agronomic, breeding and biotechnological interventions to mitigate heavy metal toxicity problems in Agriculture. J. Agric. Food Res. 10, 100374. http://dx.doi.org/10.1016/j.ja....
 
23.
Furtak, K., Gajda, A.M., 2017. Activity of dehydrogenases as an indicator of soil environment quality. Pol. J. Soil Sci. 50(1), 33-40. http://doi.org/10.17951/pjss/2....
 
24.
Gianfreda, L., Rao, M.A., 2004. Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme and Microbial. Technol. 35(4), 339-354. https://doi.org/10.1016/j.enzm....
 
25.
Gil-Sotres, F., Trasar-Cepeda, C., Leirós, M.C., Seoane, S., 2005. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 37(5), 877-887. https://doi.org/10.1016/j.soil....
 
26.
Guan, B., Xie, B., Yang, S., Hou, A., Chen, M., Han, G., 2019. Effects of five years’ nitrogen deposition on soil properties and plant growth in a salinized reed wetland of the Yellow River Delta. Ecol. Eng. 136, 160-166. https://doi.org/10.1016/j.ecol....
 
27.
Guo, G., Wu, F., Xie, F., Zhang, R., 2012. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J. Environ. Sci. 24, 410-418. https://doi.org/10.1016/S1001-....
 
28.
Gworek, B., Dmuchowski, W., Koda, E., Marecka, M., Baczewska, M.H., Brągoszewska, P., et al., 2016. Impact of the municipal solid waste Łubna landfill on environmental pollution by heavy metals. Water 8(10), 470. https://doi.org/10.3390/w81004....
 
29.
Hinojosa, M,B., Garcia-Ruiz, R., Viñegla, B., Carreira, J.A., 2004. Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcóllar toxic spill. Soil Biol. Biochem. 36, 1637-1644. https://doi.org/10.1016/j.soil....
 
30.
Hakanson, L., 1980. An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res. 14, 975-1001. https://doi.org/10.1016/0043-1....
 
31.
Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 9. http://palaeo-electronica.org/....
 
32.
Hernández, A.J., Adarve, M.J., Gil, A., Poster, J., 1999. Soil salivation from landfill leachates: effects on the macronutrient content and plant growth of four grassland species. Chemosphere 38, 1693-1711. https://doi.org/10.1016/S0045-....
 
33.
Huang, Y., Chen, Q., Deng, M., Japenga, J., Li, T., Yang, X., et al., 2018. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manag. 207, 159-168. https://doi.org/10.1016/j.jenv....
 
34.
Hulisz, P., Charzyński, P., Greinert, A., 2018. Urban soil resources of medium- sized cities in Poland: a comparative case study of Toruń and Zielona Góra. J. Soils Sediments. 18, 358-372. https://doi.org/10.1007/s11368....
 
35.
Ishchenko, V., 2019. Heavy metals in municipal waste: the content and leaching ability by waste fraction. J Environ Sci Health. Part A. Toxic/Hazardous Substances Environ. Eng. 54(14),1448-1456. https://doi.org/10.1080/109345....
 
36.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS). Vienna. Austria.
 
37.
Jat, H.S., Datta, A., Choudhary, M., Sharma, P.C., Dixit, B., Jat, M.L., 2021. Soil enzymes activity: Effect of climate smart agriculture on rhizosphere and bulk soil under cereal based systems of north-west India. Eur. J. Soil Biol. 103, 103292. https://doi.org/10.1016/j.ejso....
 
38.
Jones, J.B., 2012. Plant nutrition and soil fertility manual. 2nd edn. Taylor and Francis Group. Boca Raton, FL, USA.
 
39.
Johnson, J.I., Temple, K., 1964. Some variables affecting the measurements of catalase activity in soil. Soil Sci. Soci. Am. 28(2), 207-209. http://doi.org/10.2136/sssaj19....
 
40.
Kalwasińska, A., Hulisz, P., Szabó, A., Binod Kumar, S., Michalski, A., Solarczyk, A., et al., 2023. Technogenic soil salinisation, vegetation, and management shape microbial abundance, diversity, and activity. Sci. Total Environ. 905, 167380. https://doi.org/10.1016/j.scit....
 
41.
Kanmani, S., Gandhimathi, R., 2013. Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Appl. Water Sci. 3, 193-205. https://doi.org/10.1007/s13201....
 
42.
Karaca, A., Cetin, S.C., Turgay, O.C., Kizilkaya, R., 2010. Effects of heavy metals on soil enzyme activities. In Soil Heavy Metals, Soil Biology; Sherameti, I., Varma, A., Eds. Springer: Berlin/Heidelberg, Germany, 19, 237-265. https://doi.org/10.1007/978-3-....
 
43.
Kekelidze, D., Tsotadze, G., Maisuradze, G., Akhalbedashvili, L., Chkhaidze, M. 2022. Assessment of the soil cover quality in the adjacent areas to landfills based on the study of changes in heavy metals concentration. J. Ecol. Eng. 23(5), 271-277. https://doi.org/10.12911/22998....
 
44.
Koda, E., Osinski, P., Kołanka, T. 2013. Flow numerical modeling for efficiency assessment of vertical barriersin landfills. In Coupled Phenomena in Environmental Geotechnics; Manassero M. Dominijanni A. Foti S. Musso G. Eds. Taylor & Francis Group: London, UK, 693-697.
 
45.
Lee, S.H., Kim, M.S., Kim, J.G., Kim, S.O., 2020. Use of soil enzymes as indicators for contaminated soil monitoring and sustainable management. Sustainability 12, 8209. https://doi.org/10.3390/su1219....
 
46.
Lemanowicz, J. 2019. Activity of selected enzymes as markers of ecotoxicity in technogenic salinization soils. Environ. Sci. Pollut. Res. 26, 13014-13024. https://doi.org/10.1007/s11356....
 
47.
Lemanowicz, J., Haddad, S.A,. Bartkowiak, A., Lamparski, R., Wojewódzki, P., 2020. The role of an urban park’s tree stand in shaping the enzymatic activity, glomalin content and physicochemical properties of soil. Sci. Total Environ. 741, 140446 https://doi.org/10.1016/j.scit....
 
48.
Lemanowicz, J., Gawlińska, K., Siwik-Ziomek, A., 2021. Impact of technogenic saline soils on some chemical properties and on the activity of selected enzymes. Energies 14, 4882. https://doi.org/10.3390/en1416....
 
49.
Lemanowicz, J., Bartkowiak, A., Breza-Boruta, B., Sowiński, P., Haddad, S.A., Jaskulska, I., 2023a. The impact of municipal waste on seasonal and spatial changes in selected macro- and micro-nutrient contents on the back-ground of soil biological activity. Minerals 13, 47. https://doi.org/10.3390/min130....
 
50.
Lemanowicz, J., Bartkowiak, A., Zielińska, A., Jaskulska, I., Rydlewska, M., Klunek, K., et al., 2023b. The effect of enzyme activity on carbon sequestration and the cycle of available macro- (P. K. Mg) and microelements (Zn, Cu) in Phaeozems. Agriculture 13, 172. https://doi.org/10.3390/agricu....
 
51.
Loska, K., Wiechuła, D., 2003. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51, 723-733. http://doi.org/10.1016/S0045-6....
 
52.
Liu, H.H., Sang, S.X., 2010. Study on the law of heavy metal leaching in municipal solid waste landfill. Environ. Monit. Assess. 165(1-4), 349-63. https://doi.org/10.1007/s10661....
 
53.
Madon, I., Drev, D., Likar, J., 2019. Long-term risk assessments comparing environmental performance of different types of sanitary landfills. Weste Menag. 96, 96-107. https://doi.org/10.1016/j.wasm....
 
54.
Makuleke, P., Ngole-Jeme, W.M., 2020. Soil heavy metal distribution with depth around a closed landfill and their uptake by Datura stramonium. Appl. Environ. Soil Sci. 8872475, 1-14. https://doi.org/10.1155/2020/8....
 
55.
Maphuhla, N.G., Lewu, F.B., Oyedeji, O.O., 2021. The effects of physicochemical parameters on analysed soil enzyme activity from Alice landfill site. Int. J. Environ. Res. Public Health 18, 221. https://doi.org/10.3390/ijerph....
 
56.
Martínez-Guijarro, R., Paches, M., Romero, I., Aguado, D., 2019. Enrichment and contamination level of trace metals in the Mediterranean marine sediments of Spain. Sci. Total Environ. 693, 133566. https://doi.org/10.1016/j.scit....
 
57.
Mafuyai, G.M., Kamoh, N.M., Kangpe, N.S., Ayuba, S.M., Eneji, I.S., 2015. Heavy metals contamination in roadside dust along major traffic roads in Jos Metropolitan area. Nigeria. J. Environ. Earth Sci. 5(5), 48-57.
 
58.
Mierzwa-Hersztek, M., Gondek, K., Klimkowicz-Pawlas, A., Chmiel, M.J., Dziedzic, K., Taras, H., 2019. Assessment of soil quality after biochar application based on enzymatic activity and microbial composition. Int. Agrophys. 33, 331-336. http://doi.org/10.31545/intagr....
 
59.
Ngole-Jeme, V.M., 2016. Heavy metals in soils along unpaved roads in southwest Cameroon: contamination levels and health risks. Ambio 45, 374-386. https://doi.org/10.1007%2Fs132....
 
60.
Nurzhan, A., Tian, H., Nuralykyzy, B., He, W., 2022. Soil enzyme activities and enzyme activity indices in long-term arsenic-contaminated soils. Eurasian Soil Sci. 55, 1425-1435. https://doi.org/10.1134/S10642....
 
61.
Odom, F., Gikunoo, E., Arthur, E.K., Agyemang, F.O., Mensah-Darkwa, K., 2021. Stabilization of heavy metals in soil and leachate at Dompoase landfill site in Ghana. Environ. Chall. 5, 100308. https://doi.org/10.1016/j.envc....
 
62.
Oman, C.B., Junestedt, C. 2008. Chemical characterization of landfill leachates – 400 parameters and compounds. Waste Manag. 28(10), 1876–91. http://dx.doi.org/10.1016/j.wa....
 
63.
Olander, L., Vitousek, P., 2000. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochem. 49, 175-191. https://doi.org/10.1023/A:1006....
 
64.
Othman, E., Yusoff, M.S., Aziz, H.A., Adlan, M.N., Bashir, M.J., Hung, Y.T. 2010. The effectiveness of silica sand in semi-aerobic stabilized landfill leachate treatment. Water 2(4), 904-915. https://doi.org/10.3390/w20409....
 
65.
Pasalari, H., Farzadkia, M., Gholami, M., Emamjomeh, M.M., 2019. Management of landfill leachate in Iran: valorization. characteristics and environmental approaches. Environ. Chem. Lett. 17, 335-348. https://doi.org/10.1007/s10311....
 
66.
Paz-Ferreiro, J., Gascó, G., Gutierrez, B., Mendez, A., 2012. Soil biochemical activities and geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol. Fertil. Soils 48, 511-517. https://doi.org/10.1007/s00374....
 
67.
Picariello, E., Baldantoni, D., Muniategui-Lorenzo, S., Concha-Grana˜, E., De Nicola, F., 2021. A synthetic quality index to eval-uate the functional stability of soil microbial communities after perturbations. Ecol. Indic. 128, 107844. https://doi.org/10.1016/j.ecol....
 
68.
PN-ISO 10390; 1997. Chemical and Agricultural Analysis: Determining Soil pH. Polish Standards Committee: Warszawa, Poland.
 
69.
Plak, A., Bis, M., Lata, L., Melke, J., Mojak, J., 2017. The Assessment of heavy metals content in total and bioavailable forms in the soils surrounding Cementownia Chelm S.A. in Chelm. Poland. Pol. J Soil Sci. 49(1), 15-27. http://dx.doi.org/10.17951/pjs....
 
70.
Prechthai, T., Parkpian, P., Visvanathan, C., 2008. Assessment of heavy metal contamination and its mobilization from municipal solid waste open dumping site. J. Haz. Mater 156, 86-94. https://dx.doi.org/10.1016/j.j....
 
71.
Reeuwijk van, L.P., 2002. Procedures for soil analysis. 6th Edition. ISRIC. FAO. Wageningen, Holland.
 
72.
Regulation of the Minister of the Environment dated 1 September 2016 on assessment procedures for the land surface pollution. J. Laws. item 1359. September 5, 2016.
 
73.
Richards, L.A., 1954. Diagnosis and improvement of saline alkali soils. Agriculture. 160. Handbook 60. US Department of Agriculture. Washington DC.
 
74.
Rodríguez-Rastrero, M., Suárez, C.E., Ortega, A., Cuevas, J., Fernández, R., 2023. Geochemical anomalies in soils and surface waters in an area adjacent to a long-used controlled municipal landfill. Sustainability 15, 16280. https://doi.org/10.3390/su1523....
 
75.
Seshan, B.R.R., Natesan, U., Deepthi, K., 2010. Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India. Int. J. Environ. Sci. Technol. 7(2), 291-306. http://dx.doi.org/10.1007/BF03....
 
76.
Shailaja, G.S.J., Srinivas, N., Prasad Rao, P.V.V., 2021. Effect of municipal solid waste leachate on soil enzymes. Nat. Environ. Pollut. Technol. 20(2), 643-648. https://doi.org/10.46488/NEPT.....
 
77.
Spohn, M., Carminati, A., Kuzyakov, Y., 2013. Soil zymography: a novel in situ method for mapping distribution of enzyme activity in soil. Soil Biol. Biochem. 58, 275-280. https://doi.org/10.1016/j.soil....
 
78.
Statistica. Data Analysis Software System. Version 12; TIBCO Software Inc.: Palo Alto. CA. USA. (2019) Available online: https://www.tibco.com/products... (accessed on 28 September 2021).
 
79.
Steinweg, J.M., Dukes, J.S., Paul, E.A., Wallenstein, M.D., 2013. Microbial responses to multi-factor climate change: Effects on soil enzymes. Front. Microbiol. 4, 146. https://doi.org/10.3389/fmicb.....
 
80.
Sutherland, R.A., Tolosa, C.A., Tack, F.M.G., Verloo, M.G. 2000. Characterization of selected element concentrations and enrichment ratiosin background and anthropogenically impacted roadside areas. Arch. Environ. Contam. Toxicol. 38(4), 428-438. https://doi.org/10.1007/s00244....
 
81.
Thalmann, A., 1968. Zur methodic derestimung der Dehydrogenaseaktivität und Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsch Forsch 21, 249-258.
 
82.
Tałałaj, I.A., 2014. Release of heavy metals on selected municipal landfill during the calendar year. Ann. Set. Environ. Prot. 16, 404-420.
 
83.
Telesiński, A., 2012. The effect of salinity on some biochemical indices of soil fertility. Water-Environment-Rural Areas 12(1), 209-217.
 
84.
Tomlinson, D.L., Wilson, J.G., Harris, C.R., Jeffrey, D.W., 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen 33(1-4), 566-575.
 
85.
Tan, X., Xie, B., Wang, J., He, W., Wang, X., Wei, G., 2014. County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment. Sci. World J. 535768. https://doi.org/10.1155/2014/5....
 
86.
USDA, 2022. Keys to Soil Taxonomy. 13 Edition. United States Department of Agriculture. Natural Resources Conservation Service, 1-332.
 
87.
Uzoekwe, A.S., Glory, R., 2020. Level and ecological risk assessment of heavy metals in old landfill in Bayelsa state. Nigeria. J. Environ. Chem. Ecotox. 12(1), 32-44. https://doi.org/10.5897/JECE20....
 
88.
Wang, C., Ye, Z., Wang, W., Jin, M., 2016. Traffic-related heavy metal contamination in urban areas and correlation with traffic activity in China. Trans Res. Rec: J. Transp Res. Board 2571, 80-89. https://doi.org/10.3141/2571-0....
 
89.
Wang, Y., Huang, X.H., Jiang, Y., Liu, X.S., Zhu, F., 2019. Effects of N addition on soil exchangeable cations in a young Keteleeria fortunei var. cyclolepis forest. Ecoscience 26, 259-268. https://doi.org/10.1080/119568....
 
90.
Wang, S., Han, Z., Wan, J.,, He X., Zhou, Z., Hu, X., 2022. Environmental risk assessment and factors influencing heavy metal concentrations in the soil of municipal solid waste landfills. Weste Menag. 139, 330-340. https://doi.org/10.1016/j.wasm....
 
91.
Wanga, L., Zaraatpiszeh, M., Wei, Z., Xu, M., 2022. Heavy metal pollution and risk assessment of farmland soil around abandoned domestic waste dump in Kaifeng City. Front. Environ. Sci. 10, 946298. https://doi.org/10.3389/fenvs.....
 
92.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., et al., 2019. Soil organic carbon storage as a key function of the soils-A review of drivers and indicators at various scales. Geoderma 333, 149-162. https://doi.org/10.1016/j.geod....
 
93.
Vongdala, N., Tran, H.D., Xuan, T.D., Teschke, R., Khanh, T.D., 2018. Heavy metal accumulation in water. soil. and plants of municipal solid waste landfill in Vientiane, Laos. Int. J. Environ. Res. Public Health 16(1), 22. https://doi.org/10.3390/ijerph....
 
94.
Zonta, R., Zaggia, L., Argrse, E., 1994. Heavy metal and grain size distributions in estuarine shallow water sediments of the Cona Marsh (Venice Lagoon, Italy). Sci. Total Environ. 151, 19-28. https://doi.org/10.1016/0048-9....
 
95.
Zouboulis, A.I., Loukidou, M.X., Christodoulou, K., 2001. Enzymatic treatment of sanitary landfill leachate. Chemosphere 44(5), 1103-8. https://doi.org/10.1016/S0045-....
 
96.
Xiao, W., Chen, X., Jing, X., Zhu, B., 2018. A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biol. Biochem. 123, 21-32. https://doi.org/10.1016/j.soil....
 
97.
Xie, S., Ma, Y., Strong, P.J., Clarke, W.P., 2015. Fluctuation of dissolved heavy metal concentrations in the leachate from anaerobic digestion of municipal solid waste in commercial scale landfill bioreactors: The effect of pH and associated mechanisms. J. Haz. Mater 299, 577-583. https://doi.org/10.1016/jhazma....
 
98.
Yaashikaa, P.R., Kumar, P,S., Nhung, T.C., Hemavathy, R.V., Jawahar, M.J., Neshaanthini, J.P., et al., 2022. A review on landfill system for municipal solid wastes: Insight into leachate. gas emissions. environmental and economic analysis. Chemosphere 309(1), 136627. https://doi.org/10.1016/j.chem....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top