RESEARCH PAPER
Variable responses of soil pore structure to organic and inorganic fertilization in a Vertisol
Renjie Ruan 1, 2  
,   Zhongbin Zhang 2  
,   Renfeng Tu 1  
,   Yuekai Wang 2  
,   Peng Xiong 2  
,   Wei Li 3  
,   Huan Chen 3  
 
More details
Hide details
1
School of Resources and Environment, Anhui Agricultural University, China
2
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, CAS, China
3
Anhui Academy of Agricultural Sciences, China
CORRESPONDING AUTHOR
Zhongbin Zhang   

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, CAS, China
Final revision date: 2021-06-20
Acceptance date: 2021-08-05
Publication date: 2021-09-02
 
Int. Agrophys. 2021, 35(2): 221–225
 
HIGHLIGHTS
  • 1: Long-term organic fertilization can improve macroporosity of Vertisol.
  • 2: Long-term inorganic fertilization deteriorates soil macropore connectivity.
  • 3: Soil macropore connectivity was positively related to air permeability.
KEYWORDS
TOPICS
ABSTRACT
Soil pore structure may become highly variable under different fertilization regimes. This study aims to identify the impacts of long-term fertilization on the soil pore characteristics in a Vertisol and their relationships with water-holding capacity, air permeability and penetration resistance, using X-ray computed tomography. Intact soil cores were sampled from a long-term (37 years) continuous fertilization experiment including treatments with no fertilization (Control), inorganic fertilization, and organic fertilization. The basic soil properties, the three-dimensional characteristics of the macropores, water-holding capacity, air permeability and penetration resistance were all analysed. The results show that, in comparison with the control, the organic fertilization treatment resulted in increased total porosity, macroporosity and porosity with a diameter >1000 μm, this was probably due to the increased soil organic carbon content and aggregate stability. The inorganic fertilization treatment had a lower macropore connectivity, air permeability and higher penetration resistance relative to the control, a probable explanation is the decreased aggregate stability resulting from a large amount of dispersing ions in the inorganic fertilizers. Air permeability was positively correlated with macropore connectivity, while water-holding capacity and penetration resistance had no relationship with macropore characteristics. Our findings demonstrate that long-term organic fertilization can improve the macroporosity of Vertisol, while long-term inorganic fertilization has a detrimental effect on soil macropore connectivity.
 
REFERENCES (50)
1.
Bengough A., Bransby F., Hans J., McKenna S., Roberts T., Valentine T., 2006. Root responses to soil physical conditions; growth dynamics from field to cell. J. Exp. Bot., 57, 437-447, https://doi.org/10.1093/jxb/er....
 
2.
Blanco-Canqui H., Schlegel A.J., 2013. Implications of inorganic fertilization of irrigated corn on soil properties: Lessons learned after 50 years. J. Environ, Qual., 42, 861-871, https://doi.org/10.2134/jeq201....
 
3.
Bribiesca E., 2000. A measure of compactness for 3D shapes. Comput. Math. with Appl., 40, 1275-1284, https://doi.org/ 10.1016/S0898-1221(00)00238-8.
 
4.
Brierley J.A., Stonehouse H.B., Mermut A.R., 2011. Vertisolic soils of Canada: Genesis, distribution, and classification. Can. J. Soil Sci., 91, 903-916, https://doi.org/10.4141/cjss 10060.
 
5.
Celik I., Gunal H., Budak M., Akpinar C., 2010. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma, 160, 236-243, https://doi.org/10.1016/j.geod....
 
6.
Chen H., Cao C., Lingcong K., 2014. Study on wheat yield stability in huaibei lime concretion black soil area based on long-term fertilization experiment. Sci. Agric. Sin., 47, 2580-2590.
 
7.
Colombi T., Braun S., Keller T., Walter A., 2017. Artificial macropores attract crop roots and enhance plant productivity on compacted soils. Sci. Total Environ., 574, 1283-1293, https://doi.org/10.1016/j.scit....
 
8.
Dal Ferro N., Charrier P., Morari F., 2013. Dual-scale micro-CT assessment of soil structure in a long-term fertilization experiment. Geoderma 204, 84-93, https://doi.org/10.1016/j.geod....
 
9.
Dougherty R.P., Kunzelmann K., 2007. Computing local thickness of 3D structures with ImageJ. Microsc. Microanal., 13, 1678-1679, https://doi.org/10.1017/S14319....
 
10.
Guo J.H., Liu X.J., Zhang Y., Shen J., Han W., Zhang W., Christie P., Goulding K., Vitousek P., Zhang F., 2010. Significant acidification in major Chinese croplands. Science, 327, 1008-1010, https://doi.org/10.1126/scienc....
 
11.
Guo Z., Zhang J., Fan J., Yang X., Yi Y., Han X., Wang D., Zhu P., Peng X., 2019a. Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments. Sci. Total Environ., 660, 1029-1037, https://doi.org/10.1016/j.scit....
 
12.
Guo Z., Zhang Z., Zhou H., Wang D., Peng X., 2019b. The effect of 34-year continuous fertilization on the SOC physical fractions and its chemical composition in a Vertisol. Sci. Rep., 9, 2505, https://doi.org/10.1038/s41598....
 
13.
Głąb T., Gondek K., 2014. The influence of soil compaction and N fertilization on physico-chemical properties of Mollic Fluvisol soil under red clover/grass mixture. Geoderma 226-227, 204-212, https://doi.org/10.1016/j.geod....
 
14.
Haynes R.J., Naidu R., 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosys., 51, 123-137, https://doi.org/10.1023/A:1009....
 
15.
Hovadik J.M., Larue D.K., 2007. Static characterizations of reservoirs: refining the concepts of connectivity and continuity. Petrol. Geosci., 13, 195-211, https://doi.org/10.1144/ 1354 -079305-697.
 
16.
Katuwal S., Norgaard T., Moldrup P., Lamandé M., Wildenschild D., de Jonge L.W., 2015. Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography. Geoderma 237, 9-20, https://doi.org/10.1016/j.geod....
 
17.
Kishne A.S., Ge Y., Morgan C.L.S., Miller W.L., 2012. Surface cracking of a vertisol related to the history of available water. Soil Sci. Soc. Am. J., 76, 548-557, https://doi.org/ 10.2136/sssaj2011.0060.
 
18.
Larsbo M., Koestel J., Jarvis N., 2014. Relations between macropore network characteristics and the degree of preferential solute transport. Hydrol. Earth Syst. Sci., 18, 5255-5269, https://doi.org/10.5194/hess-1....
 
19.
Le Bissonnais Y., 1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci., 47, 425-437, https://doi.org/10.1111/j. 1365-2389.1996.tb01843.x.
 
20.
Luo L.F., Lin H., Schmidt J., 2010. Quantitative relationships between soil macropore characteristics and preferential flow and transport. Soil Sci. Soc. Am. J., 74, 1929-1937, https://doi.org/10.2136/sssaj2....
 
21.
Lu S., Yu X., Zong Y., 2019. Nano-microscale porosity and pore size distribution in aggregates of paddy soil as affected by long-term mineral and organic fertilization under rice-wheat cropping system. Soil Till. Res., 186, 191-199, https://doi.org/10.1016/j.stil....
 
22.
Naveed M., Moldrup P., Arthur E., Wildenschild D., Eden M., Lamandé M., Vogel H.-J., De Jonge L.W., 2013. Revealing soil structure and functional macroporosity along a clay gradient using X-ray computed tomography. Soil Sci. Soc. Am. J., 77, 403-411, https://doi.org/10.2136/sssaj2....
 
23.
Naveed M., Moldrup P., Schaap M.G., Tuller M., Kulkarni R., Vogel H.J., Wollesen de Jonge L., 2016. Prediction of biopore- and matrix-dominated flow from X-ray CT-derived macropore network characteristics. Hydrol. Earth Syst. Sci., 20, 4017-4030, https://doi.org/10.5194/hess-2....
 
24.
Naveed M., Moldrup P., Vogel H.-J., Lamandé M., Wildenschild D., Tuller M., de Jonge L.W., 2014. Impact of long-term fertilization practice on soil structure evolution. Geoderma 217, 181-189, https://doi.org/10.1016/j.geod....
 
25.
Nciizah A.D., Wakindiki I.I., 2012. Aggregate stability and strength of a hardsetting soil amended with cattle manure. Afr. J. Agric. Res., 7, 68-73, https://doi.org/10.5897/AJAR11....
 
26.
Pagliai M., Vignozzi N., Pellegrini S., 2004. Soil structure and the effect of management practices. Soil Till. Res., 79, 131-143, https://doi.org/10.1016/j.stil....
 
27.
Paradelo M., Katuwal S., Moldrup P., Norgaard T., Herath L., de Jonge L.W., 2016. X-ray CT-derived soil characteristics explain varying air, water, and solute transport properties across a loamy field. Vadose Zone J., 15, https://doi.org/ 10.2136/vzj2015.07.0104.
 
28.
Peth S., Horn R., Beckmann F., Donath T., Fischer J., Smucker A., 2008. Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography. Soil Sci. Soc. Am. J., 72, 897-907, https://doi.org/10.2136/sssaj2....
 
29.
Pires L.F., Borges J.A.R., Rosa J.A., Cooper M., Heck R.J., Passoni S., Roque W.L., 2017. Soil structure changes induced by tillage systems. Soil Till. Res., 165, 66-79, https://doi.org/10.1016/j.stil....
 
30.
Rabot E., Wiesmeier M., Schlüter S., Vogel H.-J., 2018. Soil structure as an indicator of soil functions: a review. Geoderma, 314, 122-137, https://doi.org/10.1016/j.geod....
 
31.
Rahman M.T., Zhu Q.H., Zhang Z.B., Zhou H., Peng X., 2017. The roles of organic amendments and microbial community in the improvement of soil structure of a Vertisol. Appl. Soil Ecol., 84-93, https://doi.org/10.1016/j.apso....
 
32.
Sainju U.M., Whitehead W.F., Singh B.P., 2003. Agricultural management practices to sustain crop yields and improve soil and environmental qualities. Sci. World J., 3, 768-789, https://doi.org/10.1100/tsw.20....
 
33.
Schjønning P., Iversen B.V., Munkholrn L.J., Labouriau R., Jacobsen O.H., 2005. Pore characteristics and hydraulic properties of a sandy loam supplied for a century with either animal manure or mineral fertilizers. Soil Use Manag., 21, 265-275, https://doi.org/10.1111/j.1475....
 
34.
Sezgin M., Sankur B., 2004. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging, 13, 146-166, https://doi.org/10.1117 /1.1631315.
 
35.
Singh N., Kumar S., Udawatta R., Anderson S., Jonge L., Katuwal S., 2021. X-ray micro-computed tomography characterized soil pore network as influenced by long-term application of manure and fertilizer. Geoderma, 385, 114872, https://doi.org/10.1016/j.geod....
 
36.
Smet S., Beckers E., Plougonven E., Léonard A., Degré A., 2018. Can The Pore Scale Geometry Explain Soil Sample Scale Hydrodynamic Properties? Front. Environ. Sci., 6, https://doi.org/10.3389/fenvs.....
 
37.
Soil Survey Staff, 2015. Illustrated guide to soil taxonomy. U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, Nebraska.
 
38.
Sumner M.E., Miller W.P., 1996. Cation exchange capacity and exchange coefficients. In: Methods of soil analysis (Eds D. Sparks, A. Page, P. Helmke, R. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston and M.E. Sumner). John Wiley & Sons, Ltd, Madison, Wisconsin, USA, 1201-1229, https://doi.org/10.2136/sssabo....
 
39.
Tian K., Zhao Y., Xu X., Hai N., Huang B., Deng W., 2015. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agric. Ecosyst. Environ., 204, 40-50, https://doi.org/10.1016/j.agee....
 
40.
Vogel H.J., Roth K., 2001. Quantitative morphology and network representation of soil pore structure. Adv. Water Resour., 24, 233-242, https://doi.org/10.1016/S0309-....
 
41.
Xu L., Wang M., Shi X., Yu Q., Shi Y., Xu S., Sun W., 2018. Effect of long-term organic fertilization on the soil pore characteristics of greenhouse vegetable fields converted from rice-wheat rotation fields. Sci. Total Environ., 631, 1243-1250, https://doi.org/10.1016/j.scit....
 
42.
Yen J.-C., Chang F.-J., Chang S., 1995. A new criterion for automatic multilevel thresholding. IEEE Trans. Image Process., 4, 370-378, https://doi.org/10.1109/83.366....
 
43.
Yi Y., 2009. Methods for Studying Soil Physics (in Chinese). Peking University Press, Beijing.
 
44.
Zhang Z., Liu K., Zhou H., Lin H., Li D., Peng X., 2018. Three dimensional characteristics of biopores and non-biopores in the subsoil respond differently to land use and fertilization. Plant Soil, 428, 453-467, https://doi.org/10.1007/s11104 -018-3689-3.
 
45.
Zhang Z., Liu K., Zhou H., Lin H., Li D., Peng X., 2019. Linking saturated hydraulic conductivity and air permeability to the characteristics of biopores derived from X-ray computed tomography. J. Hydrol., 571, 1-10, https://doi.org/10.1016/j.jhyd....
 
46.
Zheng Y., Han X., Li Y., Yang J., Li N., An N., 2019. Effects of biochar and straw application on the physicochemical and biological properties of paddy soils in Northeast China. Sci. Rep., 9, 16531, https://doi.org/10.1038/s41598 -019-52978-w.
 
47.
Zhou H., Chen C., Wang D., Arthur E., Zhang Z., Guo Z., Peng X., Mooney S.J., 2020. Effect of long-term organic amendments on the full-range soil water retention characteristics of a Vertisol. Soil Till. Res., 202, 104663, https://doi.org/10.1016/j.stil....
 
48.
Zhou H., Fang H., Hu C., Mooney S.J., Dong W., Peng X., 2017. Inorganic fertilization effects on the structure of a calcareous silt loam Soil. Agron. J., 109, 2871-2880, https://doi.org/ 10.2134/agronj2016.10.0590.
 
49.
Zhou H., Fang H., Zhang Q., Wang Q., Chen C., Mooney S.J., Peng X., Du Z., 2019. Biochar enhances soil hydraulic function but not soil aggregation in a sandy loam. Eur. J. Soil Sci., 70, 291-300, https://doi.org/10.1111/ejss.1....
 
50.
Zhou H., Peng X., Perfect E., Xiao T., Peng G., 2013. Effects of organic and inorganic fertilization on soil aggregation in an Ultisol as characterized by synchrotron based X-ray micro-computed tomography. Geoderma, 195-196, 23-30, https://doi.org/10.1016/j.geod....
 
eISSN:2300-8725
ISSN:0236-8722