Variability of Soil Thermal Properties Along a Catena in Middle Tennessee, USA
More details
Hide details
Agriculture, Middle Tennessee State University, United States
Samuel Haruna   

School of Agriculture, Middle Tennessee State University, 37132, Murfreesboro, United States
Final revision date: 2021-06-07
Acceptance date: 2021-07-08
Publication date: 2021-08-24
Int. Agrophys. 2021, 35(2): 209–219
  • • Spatial variability of soil thermal properties along a catena was analyzed
  • • Soil organic carbon was 71% higher at the toeslope compared with the backslope
  • • At 0 kPa, the volumetric heat capacity was spatially least variable at the toeslope
  • • At -33 kPa, thermal properties exhibited long-range variability at the summit
Characterizing the spatial variability of soil thermal properties is an important component of precision agriculture. The current study characterized the spatial variability of soil thermal properties across five slope positions: summit, shoulderslope, backslope, footslope, and toeslope. Triplicate soil samples (0-18 cm) were collected from each slope position from a pasture field planted to tall fescue (Festuca arundinacea syn. sychedonorus arundinaceus). Soil thermal properties (thermal conductivity [λ], volumetric heat capacity [C], thermal diffusivity [D]), volumetric water content (θ) (at 0 and -33 kPa soil water matric potentials), bulk density (ρb), and soil organic carbon (SOC) were determined. Results showed that SOC was 26% higher, while ρb was 10% lower at the toe slope compared with the summit due to depositional forces. At saturation, C was 5% higher at the toe slope compared with the summit which is consistent with SOC and θ results. Semivariogram analysis showed that at saturation, the spherical isotropic models provided the best fit, for soil thermal properties (R2 = 0.95). The foot and toe slope positions exhibited the least variability in soil thermal properties. Future studies should explore the influence of a combination of slope position and various cropping systems on soil thermal properties.
The authors declare no conflict of interest.
Abu-Hamdeh H.N., and Reeder R.C., 2000. Soil thermal conductivity: effects of density, moisture, salt concentrations and organic matter. Soil Sci. Soc. Am. J., 64, 1285-1290,
Adhikari P., Udawatta R.P., and Anderson S.H., 2014. Soil thermal properties under prairies, conservation buffers, and corn-soybean land use systems. Soil Sci. Soc. Am. J., 78, 1977-1986, https://doi:10.2136/sssaj2014.....
Ayoubi S.H., Zamani S.M., and Khomali F., 2007. Spatial variability of some soil properties for site specific farming in northern Iran. J. Plant Prod., 2, 225-236.
Bogunovic I., Pereira P., and Brevick B.B., 2017. Spatial distribution of soil chemical properties in an organic farm in Croatia. Sci. Total Environ., 584, 535-545,
Bogunovic I., Mesic M., Zgorelec Z., Jurisic A., and Bilandzija D., 2014. Spatial variation of soil nutrients on sandy-loam soil. Soil Till. Res., 144, 174-183.
Brady N.C., and Weil R.R., 2008. The nature and properties of soils (14th ed.). Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 60-62.
Bristow K.L., 2002. Thermal conductivity. In: J.H. Dane and G.C. Topp, (eds.). Methods of Soil Analysis. Part 4. SSSA Book Ser. 5. SSSA, Madison, WI, 1209-1226,
Burke I.C., Lauenroth W.K., Riggle R., Brannen P., Madigan B., and Beard S., 1999. Spatial variability of soil properties in shortgrass steppe: the relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns. Ecosystems. 2, 422-438,
Burrough P.A., 1981. Fractal dimensions of landscapes and their environmental data. Nature, 294, 240-242,
Burrough P.A., 1986. Principles of Geographical Information Systems for land resources assessment. New York: Oxford University Press, 102-119.
Cambardella C.A., Moorman T.B., Parkin T.B., Karlen D.L., Novak J.M., Turco R.F., and Konopka A.E., 1994. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J., 58, 1501-1511.
Cressie N., 1991. Statistics for spatial data. Wiley, New York, 900.
Dahiya R., Ingwersen J., and Streck T., 2007. The effect of mulching and tillage on the water and temperature regimes of a loess soil: Experimental findings and modeling. Soil Till. Res., 96, 52-63,
Dane J.H., and Hopmans J.W., 2002. Water retention and storage. In: J.H. Dane and G.C. Topp, editors, Methods of Soil Analysis. Part 4: Physical Methods. SSSA Book. SSSA, Madison, WI, 671-717,
Eghball B., Ferguson R.B., Varvel G.E., Hergert G.W., and Gotway C.A., 1997. Fractal characterization of spatial and temporal variability in site-specific and long-term studies. In: Fractal frontiers, ed. M. M. Novak and T. G. Dewey, 339-348. Singapore, Singapore: World Scientific.
Fabijanczyk P., Zawadzki J., and Magiera T., 2017. Magnetometric assessment of soil contamination in problematic area using empirical Bayesian and indicator kriging: A case study in Upper Silesia, Poland. Geoderma, 308, 69-77,
Fu W., Tunney H., and Zhang C., 2010. Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil Till. Res., 106, 185-193.
Gamage D.N.V., Biswas A., and Strachan I.B., 2019. Spatial variability of soil thermal properties and their relationships with physical properties at field scale. Soil Till. Res., 193, 50-58,
Garcia-Pausas J., Casals P., Camarero L., Huguet C., Sebastia M.T., Thompson R., and Romanya J., 2007. Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography. Biogeochemistry, 82, 279-289,
Gee G.W., and Or D., 2002. Particle-size analysis. In: J.H. Dane and G.C. Topps, editors, Methods of soil analysis. Part 4. SSSA Book Ser. 5. SSSA, Madison, WI, 272-278.
Grossman R.B., and Reinsch T.G., 2002. Bulk density and linear extensibility. In: J.H. Dane and G.C. Topp, editors, Methods of soil analysis. Part 4. SSSA Book Ser. 5. SSSA, Madison, WI, 201-228. doi:10.2136/sssabookser5.4.c9.
Haruna S.I., 2019. Influence of winter wheat on soil thermal properties of a Paleudalf. Int. Agroph., 33:389-395,
Haruna S.I., and Nkongolo N.V., 2013. Variability of soil physical properties in a clay-loam soil and its implication on soil management practices. Int. Sch. Res. Notices. 418586, 1-8.
Haruna S.I., and Nkongolo N.V., 2014. Spatial and fractal characterization of soil chemical properties and nutrients across depths in a clay-loam soil. Commun. Soil Sci. Plant Anal., 45, 2305-2318,
Haruna S.I., Anderson S.H., Nkongolo N.V., Reinbott T., and Zaibon S., 2017. Soil thermal properties influenced by perennial biofuel and cover crop management. Soil Sci. Soc. Am. J., 81, 1147-1156,
Isaaks E.H., and Srivastava R.M., 1989. An introduction to applied geostatistics. Oxford University Press, Ney York, 561.
Kenneth F., 2003. Fractal geometry: mathematical foundations and applications. Wiley, 308-309.
Kerry R., and Oliver M.A., 2004. Average variograms to guide soil sampling. Int. J. Appl. Earth Obs. Geoinf., 5, 307-325.
Khan F., Hayat Z., Ahmed W., Ramzan M., Shah Z., Sharif M., Mian I.A., and Hanif M., 2013. Effect of slope position on physico-chemical properties of eroded soil. Soil Environ., 32, 22-28.
Kosmas C., Gerontidis S., and Marathianou M., 2000. The effects of land use change on soils and vegetation over various lithological formations on Lesvos (Greece). Catena, 40, 51-68,
Lacasse S., and Nadim F., 1996. Uncertainties in characterizing soil properties. In: Shackleford C.D. P.P. Nelson, and M.J.S. Roth (eds.) Uncertainty in the geologic environment: from theory to practice. ASCE GSP, 58, 49-75.
Lee S.I., 2017. Correlation and spatial autocorrelation. In: Shekhar S., Xiong H., Zhou X. (eds.). Encyclopedia of GIS. Springer, Cham,
Lipiec J., Usowicz B., and Ferrero A., 2007. Impact of soil compaction and wetness on thermal properties of sloping vineyard soil. Int. J. Heat Mass Transf., 50, 3837-3847,
Longbottom T.L., Townsend-Small A., Owen L.A., and Murari M.K., 2014. Climatic and topographic controls on soil organic matter storage and dynamics in the Indian Himalaya: Potential carbon cycle-climate change feedback. Catena, 119, 125-135, 2014.03.002.
McBratney A.B., and Webster R., 1986. Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. J. Soil Sci., 37, 617-639.,
Mohanty B.P., and Mousil Z., 2000. Saturated hydraulic conductivity and soil water retention properties across a soil-slope transition. Water Resour. Res., 36, 3311-3324,
Mulla D.J., and McBratney A.B., 2002. Soil spatial variability. In: A.W. Warrick (eds.). Soil Physics Companion. CRC Press, Boca Raton, FL. USA, 343-373,
Ochsner T.E., Horton R., and Ren T., 2001. A new perspective on soil thermal properties. Soil Sci. Soc. Am. J., 65, 1641-1647. doi:10.2136/sssaj2001.1641.
Oliver M.A., 1987. Geostatistics and its application to soil science. Soil Use & Management, 3, 8-20,
Ozgoz E., 2009. Long-term conventional tillage effect on spatial variability of some soil physical properties. J. Sustain. Agric., 33, 142-160,
Oztas T., Koc A., and Comakli B., 2003. Changes in vegetation and soil properties along a slope on overgrazed and eroded rangelands. J. Arid Environ., 55, 93-100,
Perfect E., and Kay B.D., 1995. Applications of fractals in soil and tillage research: A review. Soil Till. Res., 36, 1-20,
Robinson T.P., and Metternicht G., 2006. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput. Electron. Agric., 50(2), 97-108.
SAS Institute., 2013. SAS user’s guide. Statistics. SAS Institute. Cary, NC. USA.
Schulte E.E., and Hopkins B.G., 1996. Estimation of soil organic matter by weight Loss-On Ignition. In: Magdoff F.R. M.R. Tabatabai, and E.A. Hanlon Jr. (eds.). Soil organic matter: analysis and interpretation. Special publication of Soil Sci. Soc. Am., Madison, WI, USA, 21-32 2136/sssaspecpub46.c3.
Shukla M.K., 2014. Soil physics: An introduction. CRC Press, Boca Raton, FL, 215-233.
Sindelar M., Blanco-Canqui H., Jin V.L., and Ferguson R., 2019. Do cover crops and corn residue removal affect soil thermal properties? Soil Sci. Soc. Am. J., 83, 448-457,
Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at (verified January 13, 2021).
Uhland R.E., 1950. Physical properties of soils as modified by crops and management. Soil Sci. Soc. Am. J., 14, 361-366,
Usowicz B., Kossowski, J, and Baranowski P., 1996. Spatial variability of soil thermal properties in cultivated fields. Soil Till. Res., 39, 85-100,
Usowicz B., 1999. Application of geostatistical analysis and fractal theory for the investigation of moisture dynamics in soil profile of cultivated field. Acta Agroph., 22, 229-243.
Usowicz B., Lukowski M.I., Rudiger C., Walker J.P., and Marczewski W., 2017. Thermal properties of soil in the Murrumbidgee River Catchment (Australia). Int. J. Heat Mass Transf., 115, 604-614,
Usowicz B., and Lipiec J., 2021. Spatial variability of saturated hydraulic conductivity and its links with other soil properties at the regional scale. Sci. Rep., 11, 8293,
Yang P., Byrne J.M., and Yang M., 2016. Spatial variability of soil magnetic susceptibility, organic carbon and total nitrogen from farmland in northern China. Catena, 145, 92-98.
Zaibon S., Anderson S.H., Veum K.S., and Haruna S.I., 2019. Soil thermal properties affected by topsoil thickness in switchgrass and row crop management systems. Geoderma, 350, 93-100,