RESEARCH PAPER
Antioxidant enzyme reprogramming, ROS scavenging, and modulations in secondary metabolites attenuate immunity in rice against Helminthosporium oryzae attack
More details
Hide details
1
Department of Botany, Government College University Faisalabad, Pakistan
2
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, P.R. China
3
Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
4
Microbiology and Immunology Unit, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
5
Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
Final revision date: 2025-03-18
Acceptance date: 2025-03-21
Publication date: 2025-05-27
Corresponding author
Ali Noman
Department of Botany, Government College University, Faisalabad, Pakistan, Pakistan
Int. Agrophys. 2025, 39(3): 301-317
HIGHLIGHTS
- Helminthosporium oryzae is a devastating pathogen of rice
- The results showed variation in rice traits in response to Helminthosporium oryzae
- Antioxidant defense and growth patterns indicated resistance in rice
KEYWORDS
TOPICS
ABSTRACT
In agricultural ecosystems, plant pathogens cause devastating diseases that jeopardize global food security. This study examined the physiological and biochemical mechanisms of resistance in four rice lines and one variety against Helminthosporium oryzae. A completely randomized design experiment revealed significant shoot length reduction due to fungal toxicity, with Kharamana and Sakh showing the least damage (8.3 and 14.76%, respectively), while Binicol suffered the most. Kharamana maintained the highest chlorophyll-a levels indicating post-infection superior tolerance. Antioxidant assays showed increased superoxide dismutase (SOD) activity in Kharamana (56.19%) and Sakh (46.98%), while Binicol exhibited minimal peroxidase (POD) activity. Binicol’s ascorbic acid levels dropped by 68.1%, making it highly susceptible. Secondary metabolites, including flavonoids, anthocyanins, and lignin, were significantly altered (p < 0.05), influencing resistance. Vulnerability of Binicol was due to lower metabolite levels, whereas Kharamana and Sakh exhibited reprogrammed antioxidant responses, effectively mitigating Helminthosporium oryzae effects. This comparative analysis identifies key metabolic pathways for breeding disease-resistant rice, contributing to sustainable agriculture and improved crop management. Identification of these metabolic pathways can contribute to more sustainable and resilient agricultural practices. Additionally, these findings can be extended to rice immunity to other disease for better crop management and advancing crop production.
ACKNOWLEDGEMENTS
The authors are thankful to Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2025R740), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP 2/279/46.
CONFLICT OF INTEREST
Authors declare no conflict of interest.
REFERENCES (92)
1.
Abbas, A., Murtaza, S., Aslam, F., Khawar, A., Rafique, S., Naheed, S., 2011. Effect of processing on nutritional value of rice (Oryza sativa). World J. Medical Sci. 6, 68-73.
2.
Akbar, M.U., Aqeel, M., Iqbal, N., Zafar, S., Noman, A., 2023. Morpho-physiological characterization and metabolic profiling of rice lines for immunity to counter Helminthosporium oryzae. Microbial Pathogenesis 179, 106126.
https://doi.org/10.1016/j.micp....
3.
Akbar, S., Wei, Y., Yuan, Y., Khan, M.T., Qin, L., Powell, C.A., et al., 2020. Gene expression profiling of reactive oxygen species (ROS) and antioxidant defense system following Sugarcane mosaic virus (SCMV) infection. BMC Plant Biol. 20, 532.
https://doi.org/10.1186/s12870....
5.
Akhter, N., Nafees, R., Noman, A., Aqeel, M., Hadayat, N., Khalid, N., et al., 2024. Examining adaptive responses of foeniculum vulgare to elevated sodium and chloride stress in the root zone. J. Soil Sci. Plant Nutr. 1-15.
https://doi.org/10.1007/s42729....
6.
Alexieva, V., Sergiev, I., Mapelli, S., Karanov, E., 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24(12), 1337-1344.
https://doi.org/10.1046/j.1365....
7.
Allen, S.G., Dobrenz, A.K., Schonhorst, M.H., Stoner, J.E., 1985. Heritability of NaCl tolerance in germinating alfalfa seeds. Agronomy J. 77(1), 99-101.
https://doi.org/10.2134/agronj....
9.
Ashfaq, B., Arshad, H.M.I., Atiq, M., Yousaf, S., Saleem, K., Arshad, A., 2021. Biochemical profiling of resistant phenotypes against bipolaris oryzae causing brown spot disease in rice. Frontiers Agronomy 3, 675895.
https://doi.org/10.3389/fagro.....
10.
Atim, M., Beed, F., Tusiime, G., Tripathi, L., van Asten, P., 2013. High potassium, calcium, and nitrogen application reduce susceptibility to banana Xanthomonas wilt caused by Xanthomonas campestris pv. musacearum. Plant Disease 97, 123-130.
https://doi.org/10.1094/PDIS-0....
11.
Barata-Soares, A.D., Gomez, M.L., Mesquita, C.H.d., Lajolo, F.M., 2004. Ascorbic acid biosynthesis: a precursor study on plants. Brazilian J.f Plant Physiol. 16, 147-154.
https://doi.org/10.1590/S1677-....
12.
Barnwal, M.K., Kotasthane, A., Magculia, N., Mukherjee, P.K., Savary, S., Sharma, A.K., et al., 2013. A review on crop losses, epidemiology and disease management of rice brown spot to identify research priorities and knowledge gaps. Eur. J. Plant Pathology 136, 443-457.
https://doi.org/10.1007/s10658....
13.
Bechtold, U., Ferguson, J.N., Mullineaux, P.M., 2018. To defend or to grow: lessons from Arabidopsis C24. J. Exp. Botany 69, 2809-2821.
https://doi.org/10.1093/jxb/er....
14.
Bhuiyan, N.H., Selvaraj, G., Wei, Y., King, J., 2009. Role of lignification in plant defense. Plant Signaling Behavior 4, 158-159.
https://doi.org/10.4161/psb.4.....
15.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2), 248-254.
https://doi.org/10.1006/abio.1....
16.
Cai, J., Aharoni, A., 2022. Amino acids and their derivatives mediating defense priming and growth tradeoff. Current Opinion Plant Biol. 69, 102288.
https://doi.org/10.1016/j.pbi.....
17.
Cakmak, I., Horst, W.J., 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum 83(3), 463-468.
https://doi.org/10.1111/j.1399....
18.
Çelik, Ö., Meriç, S., Ayan, A., Atak, Ç., 2020. Biotic stress-tolerant plants through small RNA technology. In: Plant small RNA. Elsevier, pp. 435-468.
https://doi.org/10.1016/B978-0....
20.
Chhabra, R., Kaur, N., Bala, A., 2019. Physiological and biochemical alterations imposed by Fusarium fujikuroi infection in aromatic and non-aromatic rice cultivars. Plant Physiol. Reports, 24, 563-575.
https://doi.org/10.1007/s40502....
21.
Chhabra, R., Kaur, N., Bala, A., 2023. Differential biochemical response of basmati and non-basmati rice seeds upon bakanae (Fusarium fujikuroi) infection. Vegetos 36, 516-525.
https://doi.org/10.1007/s42535....
22.
Choi, H.-K., Iandolino, A., da Silva, F.G., Cook, D.R., 2013. Water deficit modulates the response of Vitis vinifera to the Pierce’s disease pathogen Xylella fastidiosa. Molecular Plant-Microbe Interactions 26, 643-657.
https://doi.org/10.1094/MPMI-0....
23.
Corpas-Hervias, C., Melero-Vara, J.M., Molinero-Ruiz, M., Zurera-Muñoz, C., Basallote-Ureba, M.J., 2006. Characterization of isolates of Fusarium spp. obtained from asparagus in Spain. Plant Disease 90, 1441-1451.
https://doi.org/10.1094/PD-90-....
24.
Cruz, L.F., Cobine, P.A., De La Fuente, L., 2012. Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility. Appl.Eenviron. Microbiol. 78, 1321-1331.
https://doi.org/10.1128/AEM.06....
25.
Dallagnol, L.J., Rodrigues, F.A., Martins, S.C., Cavatte, P.C., DaMatta, F.M., 2011. Alterations on rice leaf physiology during infection by Bipolaris oryzae. Australasian Plant Pathology 40, 360-365.
https://doi.org/10.1007/s13313....
26.
Dang, F., Wang, Y., She, J., Lei, Y., Liu, Z., Eulgem, T., et al., 2014. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection. Physiologia Plantarum 150, 397-411.
https://doi.org/10.1111/ppl.12....
27.
Das, K., Roy, P., Tiwari, R.K.S., 2023. Biofortification of rice, an impactful strategy for nutritional security: Current Perspectives and Future Prospect. In: Plant-Based Diet. (Hernández-Ledesma, B., Ed.). Rijeka: IntechOpen.
https://doi.org/10.5772/intech....
28.
del Río, L.A., Corpas, F.J., López-Huertas, E., Palma, J.M., 2018. Plant superoxide dismutases: Function under abiotic stress conditions. Antioxidants Antioxidant Enzymes Higher Plants 1-26.
https://doi.org/10.1007/978-3-....
29.
Djalali Farahani-Kofoet, R., Witzel, K., Graefe, J., Grosch, R., Zrenner, R., 2020. Species-specific impact of fusarium infection on the root and shoot characteristics of asparagus. Pathogens 9, 509.
https://doi.org/10.3390/pathog....
30.
Esterbauer, H., Schwarzl, E., Hayn, M., 1977. A rapid assay for catechol oxidase and laccase using 2-nitro-5-thiobenzoic acid. Analytical Biochemistry 77, 486-494.
https://doi.org/10.1016/0003-2....
31.
Ghaemi, A., Rahimi, A., Banihashemi, Z., 2011. Effects of Water Stress and Fusarium oxysporum f. sp. lycoperseci on growth (leaf area, plant height, shoot dry matter) and shoot nitrogen content of tomatoes under greenhouse conditions. Iran Agricultural Res. 29, 51-62.
33.
Gill, U.S., Uppalapati, S.R., Gallego-Giraldo, L., Ishiga, Y., Dixon, R.A., Mysore, K.S., 2018. Metabolic flux towards the (iso)flavonoid pathway in lignin modified alfalfa lines induces resistance against Fusarium oxysporum f. sp. medicaginis. Plant, Cell Environ. 41, 1997-2007.
https://doi.org/10.1111/pce.13....
34.
Gowtham, H.G., Murali, M., Shilpa, N., Amruthesh, K.N., Gafur, A., Antonius, S., et al., 2024. Harnessing abiotic elicitors to bolster plant’s resistance against bacterial pathogens. Plant Stress 11, 100371.
https://doi.org/10.1016/j.stre....
35.
Grosch, R., Schwarz, D., 1998. Auswirkungen eines Pathogenbefalles durch Pythium aphanidermatum auf die Wurzelmorphologie von Tomate. In: Pflanzenernährung, Wurzelleistung und Exsudation: 8. Borkheider Seminar zur Ökophysiologie des Wurzelraumes. Wissenschaftliche Arbeitstagung in Schmerwitz/Brandenburg vom 22. bis 24. September 1997. Springer, pp. 65-72.
https://doi.org/10.1007/978-3-....
36.
Hamilton, P.B., Van Slyke, D.D., Lemish, S., 1943. The gasometric determination of free amino acids in blood filtrates by the ninhydrin-carbon dioxide method. J. Biological Chemistry 150, 231-250.
https://doi.org/10.1016/S0021-....
37.
Harrach, B.D., Fodor, J., Pogány, M., Preuss, J., Barna, B., 2008. Antioxidant, ethylene and membrane leakage responses to powdery mildew infection of near-isogenic barley lines with various types of resistance. Eur. J. Plant Pathology 121, 21-33.
https://doi.org/10.1007/s10658....
38.
Haydock, K., Bansode, A.S., Singh, G., Sangale, K., Haydock, K., Bansode, A.S., et al., 2021. The historical development of paddy cultivation. Learning and sustaining agricultural practices: Dialectics of Cultivating Cultivation in Rural India 139-175.
https://doi.org/10.1007/978-3-....
40.
Julkunen-Tiitto, R., 1985. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J. Agricultural Food Chemistry 33, 213-217.
https://doi.org/10.1021/jf0006....
41.
Kaur, S., Samota, M.K., Choudhary, M., Choudhary, M., Pandey, A.K., Sharma, A., et al., 2022. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiology Molecular Biology Plants 28, 485-504.
https://doi.org/10.1007/s12298....
42.
Khalil, N., Hassan, E., Shakdofa, M., Farahat, M., 2014. Beneficiation of the huge waste quantities of barley and rice husks as well as coal fly ashes as additives for Portland cement. J. Industrial Eng. Chemistry 20, 2998-3008.
https://doi.org/10.1016/j.jiec....
43.
Khush, G.S., Jena, K., 2009. Current status and future prospects for research on blast resistance in rice (Oryza sativa L.). Advances in Genetics, Genomics and Control of Rice Blast Disease 1-10.
https://doi.org/10.1007/978-1-....
44.
Kim, M., Lim, J.-H., Ahn, C.S., Park, K., Kim, G.T., Kim, W.T., et al., 2006. Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell 18, 2341-2355.
https://doi.org/10.1105/tpc.10....
45.
Klason, P., 1923. III. Beitrag zur Konstitution des Fichtenholz‐Lignins. Berichte der deutschen chemischen Gesellschaft (A, B Series), 56, 300-308.
https://doi.org/10.1002/cber.1....
46.
Krol, E., Mentzel, T., Chinchilla, D., Boller, T., Felix, G., Kemmerling, B., et al., 2010. Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. J. Biol. Chemistry 285, 13471-13479.
https://doi.org/10.1074/jbc.M1....
47.
Kużniak, E., Skłodowska, M., 2005. Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta 222, 192-200.
https://doi.org/10.1007/s00425....
49.
Less, H., Angelovici, R., Tzin, V., Galili, G., 2011. Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. Plant Cell 23, 1264-1271.
https://doi.org/10.1105/tpc.11....
51.
Lore, J., Jain, J., Hunjan, M., Gargas, G., Mangat, G., Sandhu, J., 2015. Virulence spectrum and genetic structure of Rhizoctonia isolates associated with rice sheath blight in the northern region of India. Eur. J. Plant Pathology 143, 847-860.
https://doi.org/10.1007/s10658....
52.
Mahajan, M., Ahuja, P.S., Yadav, S.K., 2011. Post-transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set. PLoS one, 6, e28315.
https://doi.org/10.1371/journa....
54.
Mofidnakhaei, M., Abdossi, V., Dehestani, A., Pirdashti, H., Babaeizad, V., 2016. Potassium phosphite affects growth, antioxidant enzymes activity and alleviates disease damage in cucumber plants inoculated with Pythium ultimum. Archives Phytopathology Plant Protection 49(9-10), 207-221.
https://doi.org/10.1080/032354....
55.
Mohammadi, M., Zhang, Z., Xi, Y., Han, H., Lan, F., Zhang, B., Wang-Pruski, G., 2019. Effects of Potassium Phosphite on biochemical contents and enzymatic activities of Chinese potatoes inoculated by Phytophthora infestans. Appl. Ecology Environ. Res. 17(2).
https://doi.org/10.15666/aeer/....
56.
Mou, S., Liu, Z., Guan, D., Qiu, A., Lai, Y., He, S., 2013. Functional analysis and expressional characterization of rice ankyrin repeat-containing protein, Os PIANK1, in basal defense against Magnaporthe oryzae attack. PloS one 8, e59699.
https://doi.org/10.1371/journa....
57.
Muimba-Kankolongo, A., 2018. Cereal production. Food crop production by smallholder farmers in Southern Africa, Challenges Opportunities Improvement 73-121.
https://doi.org/10.1016/B978-0....
59.
Myers, G.S., Grinvalds, R., Booth, S., Hutton, S.I., Binks, M., Kemp, D.J., et al., 2000. Expression of two novel proteins in Chlamydia trachomatis during natural infection. Microbial Pathogenesis 29, 63-72.
https://doi.org/10.1006/mpat.2....
60.
Nayak, S., Samanta, S., Sengupta, C., Swain, S.S., 2021. Rice crop loss due to major pathogens and the potential of endophytic microbes for their control and management. J. Appl. Biol. Biotechnol. 9, 166-175.
61.
Ngadze, E., Icishahayo, D., Coutinho, T.A., Van der Waals, J.E., 2012. Role of polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, chlorogenic acid, and total soluble phenols in resistance of potatoes to soft rot. Plant Disease 96, 186-192.
https://doi.org/10.1094/PDIS-0....
62.
Noman, A., Ali, Q., Maqsood, J., Iqbal, N., Javed, M.T., Rasool, N., et al., 2018a. Deciphering physio-biochemical, yield, and nutritional quality attributes of water-stressed radish (Raphanus sativus L.) plants grown from Zn-Lys primed seeds. Chemosphere 195, 175-189.
https://doi.org/10.1016/j.chem....
63.
Noman, A., Ali, Q., Naseem, J., Javed, M.T., Kanwal, H., Islam, W., et al., 2018b. Sugar beet extract acts as a natural bio-stimulant for physio-biochemical attributes in water stressed wheat (Triticum aestivum L.). Acta Physiologiae Plantarum 40, 1-17.
https://doi.org/10.1007/s11738....
64.
Noman, A., Liu, Z., Yang, S., Shen, L., Hussain, A., Ashraf, M.F., et al., 2018c. Expression and functional evaluation of CaZNF830 during pepper response to Ralstonia solanacearum or high temperature and humidity. Microbial Pathogenesis 118, 336-346.
https://doi.org/10.1016/j.micp....
65.
Panda, S.K., 2007. Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J. Plant Physiol. 164, 1419-1428.
https://doi.org/10.1016/j.jplp....
66.
Parada, R.Y., Mon‐nai, W., Ueno, M., Kihara, J., Arase, S., 2015. Red‐light‐induced resistance to brown spot disease caused by Bipolaris oryzae in rice. J. Phytopathol. 163, 116-123.
https://doi.org/10.1111/jph.12....
67.
Puyam, A., Pannu, P., Kaur, J., Shikha, S., 2017. Cultural, morphological and molecular variability of Sheld causing foot rot disease of basmati rice in Punjab. J. Mycol. Plant Pathol. 47, 369.
68.
Ramezani, M., Rahmani, F., Dehestani, A., 2017. Study of physio-biochemical responses elicited by potassium phosphite in downy mildew-infected cucumber plants. Archiv. Phytopathol. Plant Protection 50(11-12), 540-554.
https://doi.org/10.1080/032354....
69.
Ramzan, M., Sana, S., Javaid, N., Shah, A.A., Ejaz, S., Malik, W.N., et al., 2021. Mitigation of bacterial spot disease induced biotic stress in Capsicum annuum L. cultivars via antioxidant enzymes and isoforms. Scientific Reports 11, 9445.
https://doi.org/10.1038/s41598....
70.
Rojas, C.M., Senthil-Kumar, M., Tzin, V., Mysore, K., 2014. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Frontiers Plant Sci. 5.
https://doi.org/10.3389/fpls.2....
71.
Schwarz, D., Grosch, R., 2003. Influence of nutrient solution concentration and a root pathogen (Pythium aphanidermatum) on tomato root growth and morphology. Scientia Horticulturae 97, 109-120.
https://doi.org/10.1016/S0304-....
72.
Shabana, Y., Abdel-Fattah, G., Ismail, A., Rashad, Y., 2008. Control of brown spot pathogen of rice (Bipolaris oryzae) using some phenolic antioxidants. Brazilian J. Microbiol. 39, 438-444.
https://doi.org/10.1590/S1517-....
73.
Shamshad, A., Rashid, M., Hameed, A., Imran Arshad, H.M., 2024. Identification of biochemical indices for brown spot (Bipolaris oryzae) disease resistance in rice mutants and hybrids. Plos one 19, e0300760.
https://doi.org/10.1371/journa....
74.
Singh, A., Sarma, B.K., Upadhyay, R.S., Singh, H.B., 2013. Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol. Res. 168, 33-40.
https://doi.org/10.1016/j.micr....
75.
Singh, P., Verma, R.L., Singh, R.S., Singh, R.P., Singh, H.B., Arsode, P., et al., 2020. Biotic stress management in rice (Oryza sativa L.) through conventional and molecular approaches. New Frontiers Stress Manag. Durable Agric. 609-644.
https://doi.org/10.1007/978-98....
76.
Singhai, P., Sarma, B., Srivastava, J., 2011. Biological management of common scab of potato through Pseudomonas species and vermicompost. Biological Control 57, 150-157.
https://doi.org/10.1016/j.bioc....
77.
Sunder, S., Singh, R., Agarwal, R., 2014. Brown spot of rice: an overview. Indian Phytopathology 67, 201-215.
78.
Talieva, M., Kondrat’eva, V., 2002. Influence of exogenous salicylic acid on the level of phytohormones in tissues of Phlox paniculata and Phlox setacea leaves with special reference to resistance against the powdery mildew causative agent Erysiphe cichoracearum DC. f. phlogis Jacz. Biology Bulletin Russian Acad. Sci. 29, 551-554.
https://doi.org/10.1023/A:1021....
79.
Tarkowski, Ł.P., Signorelli, S., Höfte, M., 2020. γ-Aminobutyric acid and related amino acids in plant immune responses: Emerging mechanisms of action. Plant, Cell Environ. 43, 1103-1116.
https://doi.org/10.1111/pce.13....
80.
Thipyapong, P., Hunt, M.D., Steffens, J.C., 1995. Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochemistry 40, 673-676.
https://doi.org/10.1016/0031-9....
81.
Todesco, M., Balasubramanian, S., Hu, T.T., Traw, M.B., Horton, M., Epple, P., et al., 2010. Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465, 632-636.
https://doi.org/10.1038/nature....
82.
Torres, M.A., Jones, J.D., Dangl, J.L., 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiology 141, 373-378.
https://doi.org/10.1104/pp.106....
84.
Van Bockhaven, J., 2014. Silicon-induced resistance in rice (Oryza sativa L.) against the brown spot pathogen Cochliobolus miyabeanus. Ghent University, ISBN 978-90-5989-721-2.
85.
Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151, 59-66.
https://doi.org/10.1016/S0168-....
86.
Walters, D.R., Newton, A.C., Lyon, G.D., 2014. Induced Resistance for Plant Defense: a Sustainable Approach to Crop Protection. John Wiley Sons.
https://doi.org/10.1002/978111....
87.
Wang, Y., Pruitt, R.N., Nürnberger, T., Wang, Y., 2022. Evasion of plant immunity by microbial pathogens. Nature Rev. Microbiology 20, 449-464.
https://doi.org/10.1038/s41579....
88.
Wise, R.R., Naylor, A.W., 1987. Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 83, 278-282.
https://doi.org/10.1104/pp.83.....
89.
Wolf, B., 1982. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science Plant Analysis 13(12), 1035-1059.
https://doi.org/10.1080/001036....
90.
Xu, G., Yuan, M., Ai, C., Liu, L., Zhuang, E., Karapetyan, S., et al., 2017. uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature 545, 491-494.
https://doi.org/10.1038/nature....
91.
Yang, C., Dolatabadian, A., Fernando, W.G.D., 2022. The wonderful world of intrinsic and intricate immunity responses in plants against pathogens. Canadian J. Plant Pathology 44, 1-20.
https://doi.org/10.1080/070606....
92.
Zhishen, J., Mengcheng, T., Jianming, W., 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555-559.
https://doi.org/10.1016/S0308-....