RESEARCH PAPER
Development of pedotransfer functions to predict water-stable aggregates in heated and unheated soils
 
More details
Hide details
1
Pontificia Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
 
2
Department of Crop and Soil Science, Oregon State University, 109 Crop Science Building, Corvallis, OR 97331-3002, United States
 
3
Hermiston Agricultural Research and Extension Center, Oregon State University, 2121 S 1st St, Hermiston, OR 97838, United States
 
These authors had equal contribution to this work
 
 
Final revision date: 2025-02-15
 
 
Acceptance date: 2025-03-12
 
 
Publication date: 2025-05-28
 
 
Corresponding author
Carlos A Bonilla   

Department of Crop and Soil Science, Oregon State University, 2121 S 1st St, 97838, Hermiston, OR, United States
 
 
Int. Agrophys. 2025, 39(3): 319-330
 
HIGHLIGHTS
  • Key soil properties were measured before and after soil heating
  • Relationships between aggregate stability and soil properties were explored
  • Selected soil properties significantly changed at 300°C but not at 100°C
  • Measurements were suitable for predicting WSA before and after heating
  • Using predicted WSA in unheated soils was better for WSA estimates at 300°C
KEYWORDS
TOPICS
ABSTRACT
The wildfire temperature can affect many soil properties, such as aggregate stability. The water stable aggregate (WSA) is a soil property not typically considered in soil analysis, so pedotransfer functions are an alternative for estimating it. This study provides a series of pedotransfer functions as models to predict the effect of heating on WSA using basic soil data. Soil samples were collected from 22 different sites and analyzed in the laboratory before and after being heated at 100 and 300°C. These temperatures represent low- and medium-severity wildfires. Bulk density, organic matter (OM), sand, silt, and clay contents, and pH were used to estimate WSA for unheated and heated soils. The results showed no significant differences in WSA between unheated soils and those heated at 100°C but a significant decrease at 300°C. WSA correlated significantly with OM content and pH in unheated soils and 100°C heated soils (p<0.01), but not at 300°C. A non-linear model was developed to predict WSA in unheated soils, and two additional models were developed for heated soils. Finally, at 300°C, the organic matter, clay content, and water-stable aggregates decreased significantly while pH increased.
FUNDING
This research was supported by funding from the National Agency for Research and Development, Chile, grant ANID/FONDECYT/REGULAR 1191166 and 1220777.
CONFLICT OF INTEREST
The authors declare that there are no conflicts of interest.
REFERENCES (67)
1.
Acevedo, S.E., Martínez, S.I., Contreras, C.P., and Bonilla, C.A., 2023. Effect of data availability and pedotransfer estimates on water flow modelling in wildfire-affected soils. J. Hydrol. 617, 128919. https://doi.org/10.1016/j.jhyd....
 
2.
Acevedo, S.E., Rivera, J.I., Acuña, E., Contreras, C.P., Giraldo, C.V., Ávila, C.J., et al., 2021. Soil data management at laboratory scale focused on soil physical measurements. ASA, CSSA, SSSA International Annual Meeting, Salt Lake, UT. https://scisoc.confex.com/scis....
 
3.
Aedo, S.A., Bonilla, C.A., 2021. A numerical model for linking soil organic matter decay and wildfire severity. Ecological Modelling, 447, 109506. https://doi.org/10.1016/j.ecol....
 
4.
Agbeshie, A.A., Abugre, S., Atta-Darkwa.T., Awuah, R., 2022. A review of the effects of forest fire on soil properties. J. Forestry Res. 33(5), 1419-1441. https://doi.org/10.1007/s11676....
 
5.
Albalasmeh, A.A., Berli, M., Shafer, D.S., Ghezzehei, T.A., 2013. Degradation of moist soil aggregates by rapid temperature rise under low intensity fire. Plant Soil 362(1), 335-344. https://doi.org/10.1007/s11104....
 
6.
Archontoulis, S.V., and Miguez, F.E., 2015. Nonlinear regression models and applications in agricultural research. Agronomy J. 107(2), 786-798. https://doi.org/10.2134/agronj....
 
7.
Ayoubi, S., Mirbagheri, Z., Mosaddeghi, M.R., 2020. Soil organic carbon physical fractions and aggregate stability influenced by land use in humid region of northern Iran. Int. Agrophys. 34(3), 343-353. https://doi.org/10.31545/intag....
 
8.
Ayoubi, S., Rabiee, S., Mosaddeghi, M.R., Abdi, M.R., Abbaszadeh Afshar, F., 2021. Soil erosion and properties as affected by fire and time after fire events in steep rangelands using 137Cs technique. Arabian J. Geosci. 14(2), 113. https://doi.org/10.1007/s12517....
 
9.
Badía-Villas, D., González-Pérez, J.A., Aznar, J.M., Arjona-Gracia, B., Martí-Dalmau, C., 2014. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: Soil depth affected by fire. Geoderma 213, 400-407. https://doi.org/10.1016/j.geod....
 
10.
Bai, Y., Zhou, Y., He, H., 2020. Effects of rehabilitation through afforestation on soil aggregate stability and aggregate-associated carbon after forest fires in subtropical China. Geoderma 376, 114548. https://doi.org/10.1016/j.geod....
 
11.
Bonilla, C.A., Johnson, O.I., 2012. Soil erodibility mapping and its correlation with soil properties in Central Chile. Geoderma 189-190, 116-123. https://doi.org/10.1016/j.geod....
 
12.
Bonilla, C.A., Pastén, P.A., Pizarro, G.E., González, V.I., Carkovic, A.B., Céspedes, R.A., 2014. Forest Fires and Soil Erosion Effects on Soil Organic Carbon in the Serrano River Basin (Chilean Patagonia). In: A. E. Hartemink and K. McSweeney (Eds), Soil Carbon (pp. 229-237). Springer Int. Publ. https://doi.org/10.1007/978-3-....
 
13.
Campo, J., Gimeno-García, E., Andreu, V., González-Pelayo, O., Rubio, J.L., 2014. Cementing agents involved in the macro- and microaggregation of a Mediterranean shrubland soil under laboratory heating. Catena 113, 165-176. https://doi.org/10.1016/j.cate....
 
14.
Carkovic, A.B., Pastén, P.A., Bonilla, C.A., 2015. Sediment composition for the assessment of water erosion and nonpoint source pollution in natural and fire-affected landscapes. Sci. Total Environ. 512-513, 26-35.
 
15.
Natural Resources Information Center, 1996a. Soil Survey – Metropolitan Region. Soil description, materials, and symbols. https://biblioteca.inia.cl/han....
 
16.
Natural Resources Information Center, 1996b. Soil Survey - VI Region. Soil description, materials, and symbols. Pub. CIREN N°114. CIREN. https://bibliotecadigital.cire....
 
17.
Natural Resources Information Center, 1997a. Soil Survey - V Region. Soil description, materials, and symbols. Pub. CIREN N°116. CIREN. https://bibliotecadigital.cire....
 
18.
Natural Resources Information Center, 1997b. Soil Survey - VII Region. Soil description. https://bibliotecadigital.cire....
 
19.
Natural Resources Information Center, 2002. Soil Survey - IX Region. Soil description, materials, and symbols. CIREN. https://bibliotecadigital.cire....
 
20.
Chicco, J. M., Mandrone, G., Vacha, D., 2023. Effects of wildfire on soils: Field studies and modelling on induced underground temperature variations. Frontiers Earth Sci. 11, 1307569. https://doi.org/10.3389/feart.....
 
21.
Clergue, T.C., Saby, N.P. A., Wadoux, A.M.J.-C., Barthès, B.G., Lacoste, M., 2023. Estimating soil aggregate stability with infrared spectroscopy and pedotransfer functions. Soil Security 11, 100088. https://doi.org/10.1016/j.sois....
 
22.
Contreras, C.P., Bonilla, C.A., 2018. A comprehensive evaluation of pedotransfer functions for predicting soil water content in environmental modeling and ecosystem management. Sci. Total Environ. 644, 1580-1590. https://doi.org/10.1016/j.scit....
 
23.
Corporación Nacional Forestal., 2024. Estadísticas – Resumen Regional Ocurrencia (Número) y Daño (Superficie Afectada) por Incendios Forestales 1977-2023. Estadísticas Históricas. https://www.conaf.cl/incendios....
 
24.
Dhungana, B.P., Thapa Chhetri, V., Baniya, C.B., Sharma, S.P., 2024. Low-intensity wildfire alters selected soil properties in the tropical shorea robusta forest. Int. J. Forestry Res. 1-11. https://doi.org/10.1155/2024/4....
 
25.
Durner, W., Iden, S.C., von Unold, G., 2017. The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation. Water Res. Res. 53(1), 33-48. https://doi.org/10.1002/2016WR....
 
26.
Farid, A., Alam, M.K., Goli, V.S.N.S., Akin, I.D., Akinleye, T., Chen, X., et al., 2024. A review of the occurrence and causes for wildfires and their Impacts on the geoenvironment. Fire 7(8), 295. https://doi.org/10.3390/fire70....
 
27.
Fox, D.M., Darboux, F., Carrega, P., 2007. Effects of fire-induced water repellency on soil aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions. Hydrological Processes 21(17), 2377-2384. https://doi.org/10.1002/hyp.67....
 
28.
Giraldo, C.V., Acevedo, S.E., Contreras, C.P., Santibáñez, F., Sáez, E., Calderón, F.J., et al., 2024. Effects of soil heating changes on soil hydraulic properties in Central Chile. Geoderma 449, 117013. https://doi.org/10.1016/j.geod....
 
29.
Groemping, U., 2007. Relative importance for linear regression in R: The Package relaimpo. J. Statistical Software 17, 1-27. https://doi.org/10.18637/jss.v....
 
30.
Hrelja, I., Šestak, I., Bogunović, I., 2020. Wildfire impacts on soil physical and chemical properties – A short review of recent studies. Agric. Conspectus Scientificus, 85(4), Article 4.
 
31.
Ibrahimi, K., Mowrer, J., Amami, R., Belaid, A., 2019. Burn effects on soil aggregate stability and water repellency of two soil types from East and North Tunisia. Communications Soil Sci. Plant Analysis 50(7), 827-837. https://doi.org/10.1080/001036....
 
32.
Inbar, A., Lado, M., Sternberg, M., Tenau, H., Ben-Hur, M., 2014. Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma 221-222, 131-138. https://doi.org/10.1016/j.geod....
 
33.
Jiménez-Pinilla, P., Mataix-Solera, J., Arcenegui, V., Delgado, R., Martín-García, J.M., Lozano, E., et al., 2016. Advances in the knowledge of how heating can affect aggregate stability in Mediterranean soils: A XDR and SEM-EDX approach. Catena 147, 315-324. https://doi.org/10.1016/j.cate....
 
34.
Khaledian, Y., Brevik, E.C., Pereira, P., Cerdà, A., Fattah, M.A., Tazikeh, H., 2017. Modeling soil cation exchange capacity in multiple countries. Catena 158, 194-200. https://doi.org/10.1016/j.cate....
 
35.
Köster, K., Aaltonen, H., Berninger, F., Heinonsalo, J., Köster, E., Ribeiro-Kumara, C., Sun, H., et al., 2021. Impacts of wildfire on soil microbiome in Boreal environments. Current Opinion in Environ. Sci. Health 22, 100258. https://doi.org/10.1016/j.coes....
 
36.
Li, T., Jeřábek, J., Winkler, J., Vaverková, M.D., Zumr, D., 2022. Effects of prescribed fire on topsoil properties: A small-scale straw burning experiment. J. Hydrol. Hydromechanics, 70(4), 450-461.
 
37.
Marcos, E., Tárrega, R., Luis, E., 2007. Changes in a Humic Cambisol heated (100-500°C) under laboratory conditions: The significance of heating time. Geoderma 138(3), 237-243. https://doi.org/10.1016/j.geod....
 
38.
Marcos, E., Fernández-García, V., Fernández-Manso, A., Quintano, C., Valbuena, L., Tárrega, R., et al., 2018. Evaluation of composite burn index and land surface temperature for assessing soil burn severity in Mediterranean fire-prone pine ecosystems. Forests 9(8), 494. https://doi.org/10.3390/f90804....
 
39.
Martínez, S.I., Contreras, C.P., Acevedo, S.E., Bonilla, C.A., 2022. Unveiling soil temperature reached during a wildfire event using ex-post chemical and hydraulic soil analysis. Sci. Total Environ. 822, 153654. https://doi.org/10.1016/j.scit....
 
40.
Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M., 2011. Fire effects on soil aggregation: A review. Earth-Science Rev. 109(1), 44-60. https://doi.org/10.1016/j.ears....
 
41.
Meserve, P.L., Gómez-González, S., Kelt, D.A., 2020. The Chilean Matorral: Characteristics, Biogeography, and Disturbance. In M.I. Goldstein and D.A. DellaSala (Eds), Encyclopedia of the World's Biomes, Elsevier 594-601. https://doi.org/10.1016/B978-0....
 
42.
Molina-Roco, M., Escudey, M., Antilén, M., Arancibia-Miranda, N., Manquián-Cerda, K., 2018. Distribution of contaminant trace metals inadvertently provided by phosphorus fertilisers: Movement, chemical fractions and mass balances in contrasting acidic soils. Environ. Geochemistry Health 40(6), 2491-2509. https://doi.org/10.1007/s10653....
 
43.
Negri, S., Arcenegui, V., Mataix-Solera, J., Bonifacio, E., 2024. Extreme water repellency and loss of aggregate stability in heat-affected soils around the globe: Driving factors and their relationships. Catena 244, 108257. https://doi.org/10.1016/j.cate....
 
44.
Negri, S., Stanchi, S., Celi, L., Bonifacio, E., 2021. Simulating wildfires with lab-heating experiments: Drivers and mechanisms of water repellency in alpine soils. Geoderma 402, 115357. https://doi.org/10.1016/j.geod....
 
45.
Ozlu, E., Arriaga, F.J., 2021. The role of carbon stabilization and minerals on soil aggregation in different ecosystems. Catena 202, 105303. https://doi.org/10.1016/j.cate....
 
46.
R Core Team, 2022. R: A language and environment for statistical computing (4.2.2) [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/.
 
47.
Ramírez, P.B., Calderón, F.J., Fonte, S.J., Santibáñez, F., Bonilla, C.A., 2020. Spectral responses to labile organic carbon fractions as useful soil quality indicators across a climatic gradient. Ecological Indicators 111, 106042. https://doi.org/10.1016/j.ecol....
 
48.
Rieke, E.L., Bagnall, D.K., Morgan, C.L.S., Flynn, K.D., Howe, J.A., Greub, K.L.H., et al., 2022. Evaluation of aggregate stability methods for soil health. Geoderma 428, 116156. https://doi.org/10.1016/j.geod....
 
49.
Rivera, J.I., Bonilla, C.A., 2020. Predicting soil aggregate stability using readily available soil properties and machine learning techniques. Catena 187, 104408. https://doi.org/10.1016/j.cate....
 
50.
Roshan, A., Biswas, A., 2023. Fire-induced geochemical changes in soil: Implication for the element cycling. Sci. Total Environ. 868, 161714. https://doi.org/10.1016/j.scit....
 
51.
Royal Eijkelkamp., 2022. Wet sieving apparatus for disturbed samples. Royal Eijkelkamp. https://www.royaleijkelkamp.co....
 
52.
Sadzawka R.A., Carrasco R.M.A., Grez Z.R., Mora G.M. de la Luiz, Flores P.H., Neaman, A., 2006. Recommended methods for soil analysis in Chile. 2006 Revision. https://biblioteca.inia.cl/han....
 
53.
Sarricolea, P., Herrera-Ossandon, M., Meseguer-Ruiz, Ó. (2017). Climatic regionalisation of continental Chile. J. Maps 13(2), 66-73. https://doi.org/10.1080/174456....
 
54.
Soil Survey Staff., 2022. Kellogg soil survey laboratory methods manual, Part one: Current methods. Department of Agriculture, Natural Resources Conservation Service. https://www.nrcs.usda.gov/wps/....
 
55.
Stavi, I., 2019. Wildfires in grasslands and shrublands: A Review of impacts on vegetation, soil, hydrology, and geomorphology. Water 11(5), 10-42. https://doi.org/10.3390/w11051....
 
56.
Terefe, T., Mariscal-Sancho, I., Peregrina, F., Espejo, R., 2008. Influence of heating on various properties of six Mediterranean soils. A laboratory study. Geoderma 143(3), 273-280. https://doi.org/10.1016/j.geod....
 
57.
Thomaz, E.L., 2021. Effects of fire on the aggregate stability of clayey soils: A meta-analysis. Earth-Science Reviews, 221, 103802. https://doi.org/10.1016/j.ears....
 
58.
Topa, D., Cara, I.G., Jităreanu, G., 2021. Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. Catena 199, 105102. https://doi.org/10.1016/j.cate....
 
59.
Valle, S.R., Dörner, J., Zúñiga, F., Dec, D., 2018. Seasonal dynamics of the physical quality of volcanic ash soils under different land uses in southern Chile. Soil Till. Res. 182, 25-34. https://doi.org/10.1016/j.stil....
 
60.
Varela, M.E., Benito, E., Keizer, J.J., 2015. Influence of wildfire severity on soil physical degradation in two pine forest stands of NW Spain. Catena 133, 342-348. https://doi.org/10.1016/j.cate....
 
61.
Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1), 29.
 
62.
Wei, T., Simko, V., 2024. R package “corrplot”: Visualization of a correlation matrix (Version 0.95) [Computer software]. https://github.com/taiyun/corr....
 
63.
Wickham, H., 2016. ggplot2: Elegant graphics for data analysis (3.4.0) [Computer software]. Springer-Verlag. https://ggplot2.tidyverse.org.
 
64.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., et al., 2019. Welcome to the tidyverse. J. Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.....
 
65.
Ye-Yang Chun, Liu, Z.-H., Zhou, D., Wu, C., Su, J., Luo, X.-Y., 2021. Effect of high temperatures (100-600°C) on the soil particle composition and its micro-mechanisms. Eurasian Soil Sci. 54(10), 1599-1607. https://doi.org/10.1134/S10642....
 
66.
Zavala L. M., Granged, A.J.P., Jordán, A., Bárcenas-Moreno, G., 2010. Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions. Geoderma 158(3), 366-374. https://doi.org/10.1016/j.geod....
 
67.
Zhang, F., Kong, R., Peng, J., 2018. Effects of heating on compositional, structural, and physicochemical properties of loess under laboratory conditions. Appl. Clay Sci. 152, 259-266. https://doi.org/10.1016/j.clay....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top