Ash from Jerusalem artichoke and biopreparations enhance the growth and physiological activity of sorghum and limit environmental pollution by decreasing artificial fertilization needs
More details
Hide details
University of Łódź, Department of Plant Ecophysiology, Banacha 12/16, 90-237 Łódź, Poland
Department of the Variety Studies, Nursery and Gene Resources, Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
Final revision date: 2020-07-23
Acceptance date: 2020-07-29
Publication date: 2020-09-10
Corresponding author
Zdzisława Romanowska-Duda   

Department of Plant Ecophysiology, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
Int. Agrophys. 2020, 34(3): 365-379
An increase in plant productivity and the limitation of environmental pollution through the use of natural fertilizers are becoming the most important issues in contemporary sustainable agriculture. Therefore, the purpose of the research was to demonstrate the effect of Jerusalem artichoke ash, used alone or together with biopreparations and biogas plant waste, on the growth and physiological activity of sorghum and to show their applicability as an alternative to chemical fertilization. The sorghum plants, cultivated in Central and North Poland, were fertilized with the YaraMila Complex, a chemical fertilizer (0, 150, 300 kg ha-1) and each concentration was supplemented with Jerusalem artichoke ash (0-4 t ha-1), applied separately or together with Apol-Humus (10 L ha-1), biogas plant waste (30 m3 ha-1) and Stymjod (5 L ha-1). Within each YaraMila Complex addition, the all ash doses (preferably 2-4 t ha-1), biopreparations and biogas plant waste significantly enhanced plant growth, biomass yield, chlorophyll content, gas exchange (net photosynthesis, transpiration, stomatal conductance, intercellular CO2 concentration), enzyme activity (acid and alkaline phosphorylase, RNase, dehydrogenase) and slightly enhanced the content of the measured elements in plants and their energy properties. The ash applied together with a lower than recommended amount of YaraMila Complex (0 or 150 kg ha-1) increased plant development slightly more than twice the dose of YaraMila Complex used alone (150 or 300 kg ha-1, respectively). This demonstrates that the studied ash can serve as a natural fertilizer and may halve the recommended chemical fertilizer doses.
Abdellatif I.M.Y., Abdel-Ati Y.Y., Abdel-Mageed Y.T., and Hassan M.A.M., 2017. Effect of humic acid on growth and productivity of tomato plants under heat stress. J. Hort. Res., 25(2), 59-66,
Almodares A. and Hadi M.R., 2009. Production of bioethanol from sweet sorghum: A review. African J. Agricultural Res., 4, 772-780, http://www.academicjournals.or....
Antweiler R.C., Patton C.J., and Taylor E., 1996. Automated colorimetric methods for determination nitrate plus nitrite, nitrite, ammonium and orthophosphate ions in natural water samples. U.S. Geological Survey, open-File Report 93-638, Denver, Colorado, 1-28.
Awika M.A. and Rooney L.W., 2004. Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 65, 1199-1221,
Banks J.M., 2018. Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. Environ. Experim. Bot., 155, 118-127, https//
Biofuels in the EU, 2006. A vision for 2030 and beyond. Final draft of the Biofuels Research Advisory Council., .
Biofuels Progress Report, 2007. Report on the progress made in the use of biofuels and other renewable fuels in the Member States of the European Union, Communication from the Commission to the Council and the European Parliament, Commission of the European Communities, Brussels, 9.1.2007 COM 845 final. https://register.consilium.eur... 5389 2007.
Bistgani Z.E., Siadad S.A., Bakhshandeh A., Pirbalouti A.G., and Hashemi M., 2017. Interactive effect of draught stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop J., 5, 407-415,
Buss W., Jansson S., and Masek O., 2019. Unexplored potential of novel biochar-ash composites for use as organo-mineral fertilizers. J. Clean Prod., 208, 960-967,
Calvo P., Nelson L., and Kloepper J.W., 2014. Agricultural uses of plant biostimulants. Plant Soil, 383, 3-41,
Camino C., González-Dugo V., Hernández P., Sillero J.C., and Zarco-Tejada P.J., 2018. Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture. Int. J. Appl. Earth Obs. Geoinformation, 70, 105-117,
Ciesielczuk T., Kusza G., and Nemś A., 2011. Fertilization with biomass ashes as a source of trace elements for soils. Ochrona Środowiska i Zasobów Naturalnych, 49, 219-227.
Dębowski M., Rusanowska P., Zieliński M., Dudek M., and Romanowska-Duda Z., 2018. Biomass production and nutrient removal by Chlorella vulgaris from anaerobic digestion effluents. Energies, 11, 1654,
Dick W.A. and Tabatabai M.A., 1992. Potential uses of soil enzymes, In: Soil Microbial Ecology (Ed. Jr., F.B. Metting), Applications in Agricultural and Environmental Management, Marcel Dekker, New York, 1992, 95-127.
Dimkpa C.O. and Bindraban P.S., 2016. Fortification of micronutrients for efficient agronomic production: a review. Agron. Sustain. Dev., 36, 7,
Dimkpa C.O., McLean J.E., Britt D.W., and Anderson A.J., 2013. Antifungal activity of ZnO nanoparticles and their interactive effect with a bio-control bacterium on growth antagonism of the plant pathogen, Fusarium graminearum. BioMetals, 26, 913-924,
Faaij A.P.C., 2006. Bio-energy in Europe: changing technology choices. Energy Policy 34, 322-342,
Fang W., Delapp R.C., Kosson D.S., van der Sloot H., and Liu J., 2017. Release of heavy metals during long-term land application of sewage sludge compost: Percolation leaching test with repeated additions of compost. Chemosphere, 16, 271-280,
Fahramand M., Moradi H., Noori M., Sobhkhizi A., Adibian M., Abdollahi S., and Rigi K., 2014. Influence of humic acid on increase yield of plants and soil properties. Inter. J. Farming and Allied Sci., 3, 339-341, ©2014 IJFAS Journal-2014-3-3/339-341/31 March, 2014.
Fernando A.L., Retteenmaier N., Soldatos P., and Panoutsou C., 2018. Sustainability of perennial crops production for bioenergy and bioproducts. In: Perennial grasses for bioenergy and bioproducts (Ed. E. Alexepoulou). Academic Press, Elsevier, 245-283,
Goltsev V., Zaharieva I., Chernev P., Kouzmanova M., Kalaji H.M., Yordanov I., Krasteva V., Alexandrov V., Stefanov D., Allakhverdiev S.I., and Strasser R.J., 2012. Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation. Biochim. Biophys. Acta - Bioenerg., 1817, 1490-1498, https://doi. org/10.1016/j. bbabio.2012.04.018.
Górnik K. and Grzesik M., 2002. Effect of Asahi SL on China aster ‘Aleksandra’ seed yield, germination and some metabolic events. Acta Physiol. Plant., 24, 379-383,
Górnik K., Grzesik M., and Romanowska-Duda B.Z., 2008. The effect of chitosan on rooting of grapevine cuttings and on subsequent plant growth under drought and temperature stress. J. Fruit Ornam. Plant Res., 16, 333-343, 2008.pdf.
Grzesik M. and Romanowska-Duda Z., 2014. Improvements in germination, growth, and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae. Pol. J. Environ. Stud., 23, 1147-1153, in.pdf.
Grzesik M. and Romanowska-Duda Z.B., 2015. Ability of Cyanobacteria and green algae to improve of metabolic activity and development of willow plants. Pol. J. Environ. Stud., 24, 1003-1012,
Grzesik M., Romanowska-Duda Z., and Kalaji H.M., 2017a. Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica, 55, 510-521,
Grzesik M., Górnik K., Janas R., Lewandowki M., Romanowska-Duda Z., and van Duijn B., 2017b. High efficiency stratification of apple cultivar Ligol seed dormancy by phytohormones, heat shock and pulsed radio frequency. J. Plant. Physiol., 21, 81-90,
Hamann F.A., Czaja S., Hunsche M., Noga G., and Fiebiga A., 2018. Monitoring physiological and biochemical responses of two apple cultivars to water supply regimes with non-destructive fluorescence sensors. Scientia Hort., 242, 51-61.
Herrmann I., Karnieli A., Bonfil D.J., Cohen Y., and Alchanatis V., 2010. SWIR-based spectral indices for assessing nitrogen content in potato fields. Int. J. Remote Sens., 31, 5127–5143,
Homolová L., Malenovský Z., Clevers J.G.P.W., García-Santos G., and Schaepman M.E., 2013. Review of optical-based remote sensing for plant trait mapping. Ecol. Complex, 15, 1-16,
Jagodzinski L.S., O’Donoghue M.T., Heffernan L.B., van Pelt F.N.A.M., O’Halloran J., and Jansen M.A.K., 2018. Wood ash residue causes a mixture of growth promotion and toxicity in Lemna minor. Sci. Total Environ., 625, 667-676,
Jeznach A., 2015. General description of organic and mineral fertilizer “Stymjod” intended for foliar fertilization of plants.
Kalaji H., Oukarroum A., Kouzmanova M., Brestic M., Zivcak M., Samborska I.A., Cetner M.D., Allakhverdiev S.I., and Goltsev V., 2014. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Bioch., 81, 16-25,
Kashyap P.L., Xian X., and Heiden P., 2015. Chitosan nanoparticle based delivery system for sustainable agriculture. Internat. J. Biol. Macromol., 77, 36-51,
Knypl J.S. and Kabzińska E., 1977. Growth, phosphatase and ribonuclease activity in phosphate deficient Spirodela oligorrhiza cultures. Biochem. Physiol. Pfl., 171, 279-287,
Kordas L., Giemza-Mikoda M., and Jabłońska M., 2012. Evaluation of energy value of sorghum varieties depending on the time, sowing density and fertilization. Fragm. Agron., 29(3), 114-119,
Krzepiłko A., Zych-Wężyk I., Święciło A., Molas J., and Skwaryło-Bednarz B., 2016. Effect of iodine biofortifcation of lettuce seedlings on their mineral composition and biological quality. J. Elem., 21(4), 1071-1080, https://doi. org/10.5601/jelem.2015.20.4.1022.
Krzystek L., Wajszczuk K., Pazera A., Matyka M., Slezak R., and Ledakowicz S., 2018. The influence of plant cultivation methods on biogas production: Energy efficiency. Proc. WasteEng2018 Conf., Prague, July 2-5, 710-720, https://
Mahmood A., Ullah H., Ijaz M., Javaid M.M., Shahzad A.N., and Honermeier B., 2013. Evaluation of sorghum hybrids for biomass and biogas production. Australian J. Crop Sci. 7(10), 1456-1462,
Meller E., and Bilenda E., 2012. Effects of biomass ash on the physicochemical properties of light soil. Polityka energetyczna, 15(3), 287-292, Wyd. Instytutu GSMiE PAN Kraków, Poland.
Mukta J.A., Rahman M., Sabir A.A., Gupta D.R., Surovy M.Z., Rahman M., and Islam M.T., 2017. Chitosan and plant probiotic application enhance growth and yield of strawberry. Biocatal. Agric. Biotechnol., 11, 9-18,
Muxika A., Etxabide A., Uranga J., Guerrero P., and de la Caba K., 2017. Chitosan as the bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol., 105, 1358-1368,
Office of the Gene Technology Regulator, 2017. The Biology of Sorghum bicolor (L.) Moench subsp. bicolor (Sorghum). Australian Government Office of the Gene Technology Regulator, Version 1.1: July 2017.
O’Hara I., Kent G., Alberston P., Harrison M., Hobson P., McKenzie N., et al., 2013. Sweet sorghum: Opportunities for a new, renewable fuel and food industry in Australia. Report No: RIRDC Publication N. 13/087, RIRDC Project No. PRJ-005254, Rural Industries Research and Development Corporation.
Park B.B., Yanai R.D., Sahm J.M., Lee D.K., and Abahamson L.P., 2005. Wood ash effects plant and soil in willow bioenergy plantation. Biomass Bioenerg., 28, 355-365,
Pichyangkura R. and Chandchawan S., 2015. Biostimulant activity of chitosan in horticulture. Sci. Hortic., 196, 49-65,
Piekarczyk M., Kobierski M., Kotwica K., and Szulc P.M., 2014. Effect of barley, wheat and rape straw ash on the manganese and iron content in sandy soil (in Polish). Ekologia i Technika, 22(1), 18-23.
Puchalski C., Zapałowska A., and Hury G., 2017. The impact of sewage sludge and biomass ash fertilization on the yield, including biometric features and physiological parameters of plants of two Jerusalem artichoke (Helianthus tuberosus L.) cultivars. Folia Pomer. Univ. Technol. Stetin Agric. Aliment. Pisc. Zootech., 332, 37-52,
Pszczółkowska A., Pszczółkowski W., and Romanowska-Duda Z., 2019. Potential of Chlorella vulgaris culture for waste treatment from anaerobic biomass biodigestion at the Piaszczyna (Poland) integrated facility. J. Phycol., 55, 816-829,
Ramegowda V. and Senthil-Kumar M., 2015. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J. Plant Physiol., 176, 47-54,
Reumerman P. and van den Berg D., 2018. Reduction of fouling, slagging and corrosion characteristics of Miscanthus. (The BIOMIS Project) Report.
Romanowska-Duda Z., Grzesik M., and Kalaji H.M., 2010. Phytotoxkit test in growth assessment of corn as an energy plant fertilized with sewage sludge. Environ. Prot. Eng., 36, 73-81.
Romanowska-Duda Z., Grzesik M., and Janas R., 2019a. Maximal efficiency of PSII as a marker of sorghum development fertilized with waste from a biomass biodigestion to methane. Front Plant Sci., 9: 1920,
Romanowska-Duda Z., Janas R., and Grzesik M., 2019b. Application of Phytotoxkit in the quick assessment of ashes suitability as fertilizers in sorghum crops. Int. Agrophys., 33, 145-152,
Romanowska-Duda Z., Piotrowski K., Wolska B., Dębowski M., Zieliński M., Dziugan P., and Szufa S., 2019c. Stimulating effect of ash from Sorghum on the growth of Lemnaceae – a new source of energy biomass. In: Renewable Energy Sources: Engineering, Technology, Innovation (Eds M. Wróbel, M. Jewiarz, A. Szlęk). Springer Proceedings in Energy. Springer, Cham.
Santalla M., Omil B., Rodrigues-Soalleiro R., and Merino A., 2011. Effectiveness of wood ash containing charcoal as a fertilizer for a forest plantation in a temperate region. Plant Soil, 346, 63-78,
Schiemenz K. and Eichler-Löbermann B., 2010. Biomass ashes and their phosphorus fertilizing effect on different crops. Nutr. Cycl. Agroecosys., 87, 471-482,
Schiemenz K., Kern J., Paulsen H.M., Bachmann S., and Eichler-Lobermann B., 2011. Phosphorus fertilizing effects of biomass ashes. In: Insam H., Knapp B.A. (Eds.) Recycling of biomass ashes. Springer, Berlin, Heidelberg. 17-31,
Servin A., Elmer W., Mukherjee A., De La Torre-Roche R., Hamdi H., White J.C., Bindraban P.S., and Dimkpa C., 2015. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanopart. Res., 17:92,
Smoleń S., Sady W., Rożek S., Ledwożyw-Smoleń I., and Strzetelski P., 2011. Preliminary evaluation of the influence of iodine and nitro gen fertilization on the effectiveness of iodine biofortification and mineral composition of carrot storage roots. J. Elementol., 16, 275-285,
Stankowski S., Hury G., Gibczyńska M., and Jurgiel-Małecka G., 2014. Impact of lime, biomass ash and compost as well as preparation of EM applications on grain yield and yield components of wheat. Inżynieria Ekologiczna, 38, 17-25,
Vassiliev S.V., Baxter D., Andersen L.K., and Vassileva C.G., 2013. An overview of the composition and application of biomass ash. Fuel, 105, 19-39,
Uliasz-Bocheńczyk A. and Mokrzycki E., 2018. The elemental composition of biomass ashes as a preliminary assessment of the recovery potential. Mineral Resources Managem., 34(4), 115-132,
Zapałowska A., Puchalski C., Hury G., and Makarewicz A., 2017. Influence of fertilization with the use of biomass ash and sewage sludge on the chemical composition of Jerusalem artichoke used for energy-related purposes. J. Ecol. Engineer., 18(5), 235-245, 10.12911/22998993/76214.
Journals System - logo
Scroll to top