RESEARCH PAPER
Assessment of the early stages of rehydration observed by sorption isotherm and 1H-NMR and plant growth tests for Martian regolith simulant MGS-1
 
More details
Hide details
1
Department of Soil Science and Agrophysics, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120, Kraków, Poland
 
2
M. Smoluchowski Institute of Physics, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
 
3
The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
 
4
Department of Agricultural and Environmental Chemistry, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120 Kraków, Poland
 
5
Department of Microbiology and Biomonitoring, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120 Kraków, Poland
 
 
Final revision date: 2025-04-24
 
 
Acceptance date: 2025-04-29
 
 
Publication date: 2025-07-03
 
 
Corresponding author
Magdalena Bacior   

Department of Soil Science and Agrophysics, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120, Kraków, Poland
 
 
Int. Agrophys. 2025, 39(4): 385-398
 
HIGHLIGHTS
  • MGS-1 is hydrofobic and biotoxic to plants
  • Food supply is critical for Mars colonisation
  • Triticum aestivum best tolerated the MGS-1 substrate
KEYWORDS
TOPICS
ABSTRACT
The early stages of gaseous phase rehydration of the Mars global simulant (MGS-1) were studied using hydration kinetics, sorption isotherm, and proton nuclear magnetic resonance (1H-NMR) spectroscopy, whereas initial plant growth tests in media containing MGS-1 were assessed by microbiotests and measurement of plant biometry – seedling root length and biomass accumulation. MGS-1 is a Martian regolith analogue, whose hydration kinetics were described by a two-exponential function, and the sorption isotherm was fitted by the Dent (GAB) model. The number of empty binding sites (1/b1) for humidity h = 1 was 1.59%, indicating the elevated hydrophobicity of the sample. The free induction decay signals (FID) were fitted by the superposition of a Gaussian component, and an exponentially decaying mobile proton signal component. The 1H-NMR spectra were fitted by a Gaussian component and a narrow Lorentzian line. The NMR signal was attenuated by the presence of paramagnetic ions, particularly Fe2+. A microbiotest of the initial growth of six plant species in MGS-1 mixtures with an inert substrate, i.e. perlite, showed high toxicity of the regolith simulant. The volumetric ratio of 2:1 (MGS-1:perlite) caused plant death and a statistically significant decrease in biomass accumulation by the tested plants. Triticum aestivum best tolerated the MGS-1 substrate.
FUNDING
This work was financed by the Polish Ministry of Science and Higher Education subvention for the University of Agriculture in Krakow, Faculty of Agriculture and Economics No 010013-D011, 2025.
CONFLICT OF INTEREST
The Authors declare they have no conflict of interest.
REFERENCES (76)
1.
Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., et al., 2017. Mineralogy of an active eolian sediment from the Namib dune, Gale crater. Mars J. Geophys. Res. 112, 2344-2361. https://doi.org/10.1002/2017JE....
 
2.
Archer, Jr. P.D., Franz, H.B., Sutter, B., Arevalo, Jr. R.D., Coll, P., Eigenbrode, J.L., et al., 2014. Abundances and implications of volatilebearing species from evolved gas analysis of the Rocknest Aeolian deposit, Gale Crater, Mars. J. Geophys. Res. 119, 237-254. https://doi.org/10.1002/2013JE....
 
3.
Arthur, E., Tuller, M., Moldrup, P., de Jonge, L.W., 2015. Evaluation of theoretical and empirical water vapor sorption isotherm models for soils. Water Resour. Res. 55, 190-205. https://doi.org/10.1002/2015WR....
 
4.
Arthur, E., Tuller, M., Moldrup, P., Greve, M.H.M. Knadela, de Jonge, L.W., 2018. Applicability of the Guggenheim….
 
5.
Anderson…Boer water vapour sorption model for estimation of soil specific surface area. European J. Soil Sci. 69, 245-255. https://doi: 10.1111/ejss.12524.
 
6.
Bacior, M., Harańczyk, H., Nowak, P., Kijak, P., Marzec, M., Fitas, J., Olech, M.A., 2019. Low-temperature immobilization of water in Antarctic Turgidosculum and in Prasiola crispa. Part I. Turgidosculum complicatulum. Biointerfaces 173, 869-875. https://doi.org/10.1016/j.cols....
 
7.
Bacior, M., Nowak, P., Harańczyk, H., Patryas, S., Kijak, P., Ligęzowska, A., et al., 2017. Extreme dehydration observed in Antarctic Turgidosculum complicatulum and in Prasiola crispa. Extremophiles 21, 331-343. https://doi.org/10.1007/s00792....
 
8.
Bandfield, J.L., Hamilton, V.E., Christensen, P.R., 2000. A global view of Martian surface compositions from MGS-TES. Science 287, 1626-1630. https://doi.org/10.1126/scienc....
 
9.
Bernold, L.E., 1991. Experimental studies on mechanics of lunar excavation. J. Aerosp. Eng. 4, 9. https://doi.org/10.1061/(ASCE)...).
 
10.
Bibring, J.P., Langevin, Y., Poulet, F., Gendrin, A., Gondet, B., Berthé M., et al., 2004. Perennial water ice identified in the south polar cap of Mars. Nature 428, 627-630. https://doi.org/10.1038/nature....
 
11.
Bish, D.L., Blake, D.V., Vaniman, D.T., Chipera, S.J., Morris, R.V., Ming, D.W., et al., 2013. X-ray diffraction results from Mars science laboratory: mineralogy of rocknest at Gale Crater. Science 341, 1238932. https://doi.org/10.1007/978-1-....
 
12.
Blake, D.F., Morris, R.V., Kocurek, G., Morrison, S.M., Downs, R.T., Bish, D., et al., 2013. Curiosity at Gale Crater, Mars: characterization and analysis of the rocknest sand shadow. Science 341, 1239505.
 
13.
Bodí, M.B., Munoz-Santa, I., Armero, C., Doerr, S.H., Mataix-Solera, J., Cerdà, A., 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena 108, 14-25. https://doi.org/10.1016/j.cate....
 
14.
Bridges, J.C., Warren, P.H., 2006. The SNC meteorites: basaltic igneous processes on Mars. J. Geol. Soc. 163, 229-251. https://doi.org/10.1144/0016-7....
 
15.
Brunauer, S., Emmett, P.H., Teller, E. 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309-319. https://doi.org/10.1021/ja0126....
 
16.
Cannon, K.M., Britt, D.T., Smith, T.M., Fritsche, R.F., Batcheldor, D., 2019. Mars global simulant MGS-1: A Rocknest-based open standard for basaltic martian regolith simulants. Icarus 317, 470-478. https://doi.org/10.1016/j.icar....
 
17.
Carniel, F.C., Fernandez-Marín, B., Arc, E., Craighero, T., Laza, J.M., Incerti, M.G., Tretiach, M., Kranner I., 2021. How dry is dry? Molecular mobility in relation to thallus water content in a lichen. J. Exp. Bot. 72, 1576-1588. https://doi.org/10.1093/jxb/er....
 
18.
Chavhan, G.B., Babyn, P.S., Thomas, B., Shroff, M.M., Haacke, E.M., 2009. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 29, 1433-1449. https://doi.org/10.1148/rg.295....
 
19.
Chinnannan, K., Somagattu, P., Yammanuru, H., Nimmakayala, P., Chakrabarti, M., Reddy, U.K., 2024. Effects of Mars Global Simulant (MGS-1) on growth and physiology of sweet potato: A space model plant. Plants 13(1), 55. https://doi.org/10.3390/plants....
 
20.
Christensen, P.R., Bandfield, J.L., Smith, M.D., Hamilton, V.E., Clark, R.N., 2000. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data. J. Geophys. Res. 105, 9609-9621. https://doi.org/10.1029/1999JE....
 
21.
Christensen, P.R., McSween, Jr. H.Y., Bandfield, J.L., Ruff, S.W., Rogers, A.D., Hamilton, V.E., et al., 2005. Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature 436, 504-509. https://doi.org/10.1038/nature....
 
22.
Creamer, C.A., Foster, A.L., Lawrence, C., McFarland, J., Schulz, M., Waldrop, M.P., 2019. Mineralogy dictates the initial mechanism of microbial necromass association. Geochim. Cosmochim. Acta 260, 161-176. https://doi.org/10.1016/j.gca.....
 
23.
Dekker L.W., Doerr S.H., Oostindie K., Ziogas A.K., Ritsema, C.J., 2001. Water Repellency and Critical Soil Water Content in a Dune Sand. Soil Sci. Soc. Am. J. 65, 1667-1674. https://doi.org/10.2136/sssaj2....
 
24.
Dekker, L.W., Ritsema, C.J., 1995. Fingerlike Wetting Patterns in Two Water-Repellent Loam Soils. J. Environ. Qual. 24, 324-333. https://doi.org/10.2134/jeq199....
 
25.
Deurer, M., Müller, K., van den Dijssel, C., Mason, K., Carter, J., Clothier, B.E., 2011. Is soil water repellency a function of soil order and proneness to drought? A survey of soils under pasture in the North Island of New Zealand. Eur. J. Soil Sci. 62, 765-779. https://doi.org/10.1111/j.1365....
 
26.
de Vera, J.-P., Horneck, G., Rettberg, P., Ott, S., 2004. The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions. Adv. Space Res. 33, 1236-1243. https://doi.org/10.1016/j.asr.....
 
27.
Doerr, S.H., Shakesby, R.A., Dekker, L.W., Ritsema, C.J., 2006. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. Eur. J. Soil Sci. 57(5), 741-754. https://doi.org/10.1111/j.1365....
 
28.
Duri, L.G., Caporale, A.G., Rouphael, Y., Vingiani, S., Palladino, M., De Pascale, S., Adamo, P., 2022. The potential for lunar and martian regolith simulants to sustain plant growth: a multidisciplinary overview. Front. Astron. Space Sci. 8. https://doi.org/10.3389/fspas.....
 
29.
Ehlmann, B.L., Berger, G., Mangold, N., Michalski, J.R., Catling, D.C., Ruff, S.W., et al., 2013. Geochemical consequences of widespread clay mineral formation in Mars’ ancient crust. Space Sci. Rev. 174, 329-364. https://doi.org/10.1007/978-1-....
 
30.
Ehlmann, B.L., Mustard, J.F., Murchie, S.L., Bibring, J.-P., Meunier, A., Fraeman, A.A., et al., 2011. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53-60. https://doi.org/10.1038/nature....
 
31.
Eichler, A., Hadland, N., Pickett, D., Masaitis, D., Handy, D., Perez, A., Batcheldor, D., Wheeler, B., Palmer, A., 2021. Challenging the agricultural viability of martian regolith simulants, Icarus 354, 114022. https://doi.org/10.1016/j.icar....
 
32.
Franco, C., Tate, M., Oades, J., 1995. Studies on non-wetting sands.1. The role of intrinsic particulate organic-matter in the development of water-repellency in non-wetting sands. Soil Res. 33, 253-263. https://doi.org/10.1071/SR9950....
 
33.
Goetz, W., Bertelsen, P., Binau, C.S., Gunnlaugsson, H.P., Hviid, S.F., Kinch, K.M., et al., 2005. Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust. Nature 436, 62-65. https://doi.org/10.1038/nature....
 
34.
Han, J., Zhang, J., Yang, S., Cao, D., Prodhan, F.A., Sharma, T.P., 2022. A new composite index for global soil plant atmosphere continuum drought monitoring combing remote-sensing based terrestrial water storage and vapor pressure deficit anomalies. J. Hydrol. 615, 128622. https://doi.org/10.1016/j.jhyd....
 
35.
Harańczyk, H., 2003. On water in extremely dry biological systems. Jagiellonian University, Kraków, 2003.
 
36.
Harańczyk, H., Czak, J., Nowak, P., Nizioł, J., 2010. Initial phases of DNA rehydration by NMR and sorption isotherm. Acta Physica Polonica A, 117, 397-402. https://doi.org/10.12693/APhys....
 
37.
Harańczyk, H., Bacior, M., Olech, M., 2008. Deep dehydration of Umbilicaria aprina thalli observed by proton NMR and sorption isotherm. Antarct. Sci. 20(6), 527-535. https://doi.org/10.1017/S09541....
 
38.
Harańczyk, H., Bacior, M., Jastrzębska, P., Olech, M.A., 2009. Deep dehydration of Antarctic lichen Leptogium puberulum Hue observed by NMR and sorption isotherm. Acta Phys. Pol. A, 115, 516-520. https://doi.org/10.12693/APhys....
 
39.
Harańczyk, H., Kobierski, J., Nizioł, J., Hebda, E., Pielichowski, J., Zalitacz, D., et al., 2013. Mild hydration of didecyldimethylammonium chloride modified DNA by 1H-nuclear magnetic resonanc, e and by sorption isotherm. J. App. Phys. 113, 044702. https://doi.org/10.1063/1.4789....
 
40.
Harańczyk, H., Kobierski, J., Zalitacz, D., Nowak, P., Romanowicz, A., Marzec, M., et al., 2012. Rehydration of CTMA modified DNA powders observed by NMR. Acta Phys. Pol. A, 121, 485-490. https://doi.org/10.12693/APhys....
 
41.
Harańczyk, H., Leja, A., Strzałka, K., 2006. The effect of water accessible paramagnetic ions on subcellular structures formed in developing wheat photosynthetic membranes as observed by NMR and by sorption isotherm. Acta Phys. Pol. A, 109, 389-398. https://doi.org/10.12693/APhys....
 
42.
Harańczyk, H., Strzałka, K., Jasiński, G., Mosna-Bojarska, K., 1996. The initial stages of wheat (Triticum aestivum L.) seed imbibition as observed by proton nuclear magnetic relaxation. Colloids Surf. A: Physicochem. Eng. Asp., 115, 47-54. https://doi.org/10.1016/0927-7....
 
43.
Harper, R.J., McKissock, I., Gilkes, R.J., Carter, D.J., Blackwell, P.S., 2000. A multivariate framework for interpreting the effects of soil properties, soil management and landuse on water repellency. J. Hydrol. 231-232, 371-383. https://doi.org/10.1016/S0022-....
 
44.
Hauber, E., Brož, P., Jagert, F., Jodłowski, P., Platz, T., 2011. Very recent and wide-spread basaltic volcanism on Mars. Geophys. Res. Lett. 38, L10201. https://doi.org/10.1029/2011GL....
 
45.
Heidary, K., Najafi, Nejad, A., Dekker, L., Ownegh, M., Mohammadian Behbahani, A., 2018. Impact of soil water repellency on hydrological and erosion processes; a review. Ecopersia 6(4), 269-284.
 
46.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., Kääb, A., 2021. Accelerated global glacier mass loss in the early twenty-first century. Nat. Clim. Change 592, 726-731. https://doi.org/10.1038/s41586....
 
47.
Jordán, A., Zavala, L.M., Mataix-Solera, J., Doerr, S.H., 2013. Soil water repellency: origin, assessment and geomorphological consequences. Catena 108, 1-5. https://doi.org/10.1016/j.cate....
 
48.
Ke, X., Yao, J., Jiang, Z., Gu, X., Xu, P., 2025. Recover and surpass: The mechanisms of plants transition upon rehydration from drought. Plant Stress 15, 100782. https://doi.org/10.1016/j.stre....
 
49.
Konapala, G., Mishra, A.K., Wada, Y., Mann, M.E., 2020. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 3044. https://doi.org/10.1038/s41467....
 
50.
Li, Y., Yao, N., Tang, D., Chau, H. W., Feng, H., 2019. Soil water repellency decreases summer maize growth. Agric. For. Meteorol. 266-267, 1-11. https://doi.org/10.1016/j.agrf....
 
51.
Li, Y., Ren, X., Hill, R., Malone, R., and Zhao, Y., 2018. Characteristics of Water Infiltration in Layered Water-Repellent Soils. Pedosphere 28, 775-792. https://doi.org/10.1016/S1002-....
 
52.
Liu, H., Ju, Z., Bachmann, J., Horton, R., Ren, T., 2012. Moisture-dependent wettability of artificial hydrophobic soils and its relevance for soil water desorption curves. Soil Sci. Soc. Am. J. 76(2), 342-349. https://doi.org/10.2136/sssaj2....
 
53.
Liu, K., Li, X., Wang, S., Zhou, G., 2023. Past and future adverse response of terrestrial water storages to increased vegetation growth in drylands. npj Clim. Atmos. Sci. 6, 113. https://doi.org/10.1038/s41612....
 
54.
Long-Fox, J.M., Britt, D.T., 2023. Characterization of planetary regolith simulants for the research and development of space resource technologies. Front. Space Technol. 4: 1255535. https://doi.org/10.3389/frspt.....
 
55.
Lunine, J.I., Chambers, J., Morbidelli, A., Leshin, L.A., 2003. The origin of water on Mars. Icarus 165, 1-8. https://doi.org/10.1016/S0019-....
 
56.
Majid, N., Bahar, M., Harper, R. Megharaj, M., Naidu, R., 2023. Influence of biotic and abiotic factors on the development of non-wetting soils and management approaches. Soil Security 11, 100091. https://doi.org/10.1016/j.sois....
 
57.
Malin, M.C., Edgett, K.S., 2000. Sedimentary rocks of early Mars. Science 290, 1927-1937. https://doi.org/10.1126/scienc....
 
58.
McSween, Jr. H.Y., Taylor, G.J., Wyatt, M.B., 2009. Elemental composition of the Martian crust. Science 324, 736-739. https://doi.org/10.1126/scienc....
 
59.
Mielnik, L., Hewelke, E., Weber, J., Oktaba, L., Jonczak, J., Podlasiński, M., 2021. Changes in the soil hydrophobicity and structure of humic substances in sandy soil taken out of cultivation. Agric. Ecosyst. Environ. 319, 107554. https://doi.org/10.1016/j.agee....
 
60.
Ming, D.W., Morris, R.V., 2017. Chemical, mineralogical, and physical properties of Martian dust and soil. In: Dust in the Atmosphere of Mars and Its Impact on Human Exploration. Ed.: Levine, J.S., Winterhaler, D., Kerschmann, R.L. Cambridge Scholars Publishing, UK.
 
61.
Murchie, S.L., Mustard, J., Ehlmann, B.L., Milliken, R.E., Bishop, J.L., McKeown, N.K., et al., 2009. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 114, E00D06. https://doi.org/10.1029/2009JE....
 
62.
Nizioł, J., Harańczyk, H., Kobierski, J., Hebda, E., Pielichowski, J., Ostachowicz, B., 2013. Hydration effect on solid DNA-didecyldimethylammonium chloride complexes measured using H-nuclear magnetic resonance spectroscopy. J. Appl. Phys. 114, 144701. https://doi.org/10.1063/1.4824....
 
63.
Ramírez, D.A., Kreuze, J., Amoros, W., Valdivia-Silva, J.E., Ranck, J., Garcia, S., Salas, E., Yactayo, W., 2019. Extreme salinity as a challenge to grow potatoes under mars-like soil conditions: targeting promising genotypes. Int. J. Astrobiol. 18, 18-24. https://doi.org/10.1017/S14735....
 
64.
Smettem, K.R.J., Rye, C., Henry, D.J., Sochacki, S.J., Harper, R.J., 2021. Soil water repellency and the five spheres of influence: a review of mechanisms, measurement and ecological implications. Sci. Total Environ. 787, 147429. https://doi.org/10.1016/j.scit....
 
65.
Squyres, S.W., Arvidson, R.E., Ruff, S., Gellert, R., Morris, R.V., Ming, D.W., et al., 2008. Detection of silica-rich deposits on Mars. Science 320, 1063-1067. https://doi.org/10.1126/scienc....
 
66.
Sutter, B., McAdam, A.C., Mahaffy, P.R., Ming, D.W., Edgett, K.S., Rampe, E.B., et al., 2017. Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: results of the curiosity rover’s sample analysis at Mars (SAM) instrument from Yellowknife Bay to the Namib Dune. J. Geophys. Res. 122, 2564-2609. https://doi.org/10.1002/2016JE....
 
67.
Tariq, A., Sardans, J., Zeng, F., Graciano, C., Hughes, A.C., Farré-Armengol, G., Peñuelas, J., 2024. Impact of aridity rise and arid lands expansion on carbon-storing capacity, biodiversity loss, and ecosystem services. Glob. Chang. Biol. 30, e17292. https://doi.org/10.1111/gcb.17....
 
68.
Wamelink, G.W.W., Frissel, J.Y., Krijnen, W.H.J., Verwoert, M.R. 2019. Crop growth and viability of seeds on Mars and Moon soil simulants. Open Agric. 4, 509-516. https://doi.org/10.1515/opag-2....
 
69.
Wamelink, G.W.W., Frissel, J.Y., Krijnen, W.H.J., Verwoert, M.R., Goedhart, P.W., 2014. Can plants grow on Mars and the Moon: A growth experiment on Mars and Moon soil simulants. PLoS One 9, e103138. https://doi.org/10.1371/journa....
 
70.
Węglarz, W., Harańczyk, H., 2000. Two-dimensional analysis of the nuclear relaxation function in the time domain: the program CracSpin. J. Phys. D: Appl. Phys. 33, 1909-192. https://doi.org/10.1088/0022-3....
 
71.
Witek, M., Peemoeller, H., Szymońska, J., Blicharska, B., 2006. Investigation of Starch Hydration by 2D Time Domain NMR. Acta Phys. Pol. 3, 359-364. https://doi.org/10.12693/APhys....
 
72.
Yen, A.S., Gellert, R., Clark, B.C., Ming, D.W., King, P.L., Schmidt, M.E., et al., 2013. Evidence for a global martian soil composition extends to Gale Crater. In: Proceedings of the Lunar and Planetary Science Conference, XLIV, 44 Abstract #2495.
 
73.
Yen, A.S., Gellert, R., Schröder, C., Morris, R.V., Bell, III, J.F., Knudson, A.T., et al., 2005. An integrated view of the chemistry and mineralogy of martian soils. Nature 436, 49-54. https://doi.org/10.1038/nature....
 
74.
Zavala, L.M., González, F.A., Jordán, A., 2009. Intensity and persistence of water repellency in relation to vegetation types and soil parameters in Mediterranean SW Spain. Geoderma 152, 361-374. https://doi.org/10.1016/j.geod....
 
75.
Zhang, Q., Chen, W., Chu, J., 2023. Effect of soil hydrophobicity on soil-water retention curve of a silt loam soil. Soil Till. Res. 234, 105855. https://doi.org/10.1016/j.stil....
 
76.
Zhu, P., Zhang, G., Wang, H., Zhang, B., Liu, Y., 2021. Soil moisture variations in response to precipitation properties and plant communities on steep gully slope on the Loess Plateau. Agric. Water Manag. 256, 107086. https://doi.org/10.1016/j.agwa....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top