Study of wheat (Triticum aestivum L.) seed rehydration observed by the Dent generalized model and 1H-NMR relaxometry
More details
Hide details
Department of Soil Science and Agrophysics, University of Agriculture in Kraków, Mickiewicza 21, 31-120 Kraków, Poland
Institute of Physics, Jagiellonian University, Prof. S. Łojasiewicza 11, 30-348 Kraków, Poland
Final revision date: 2024-03-17
Acceptance date: 2024-04-04
Publication date: 2024-05-16
Corresponding author
Magdalena Bacior   

Department of Soil Science and Agrophysics, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120 Kraków, Poland
Int. Agrophys. 2024, 38(3): 231-242
  • Hydration kinetics distinguished very tightly and tightly bound water fraction, Δm/m0 = 0.082, not removed by dehydration over silica gel, and a tightly bound water fraction, Δm/m0 = 0.048
  • Sorption isotherm was better described by generalized Dent model than Dent model
  • Proton FID for Δm/m0 < 0.128 were described by Abragam function and two exponents
The early stages of winter wheat (Triticum aestivum L.) seed hydration were monitored in order to improve our understanding of the molecular mechanisms of drought resistance. Investigations were carried out using gaseous phase hydration kinetics, sorption isotherm, and 1H-NMR relaxometry. Hydration kinetics have shown that the mass increase could be fitted with a single exponential function. Two fractions of bound water were distinguished: very tightly bound water, Δm/m0 = 0.082 ± 0.016, and the tightly bound water fraction, Δm/m0 = 0.048 ± 0.033, with a hydration time th1 = (62 ± 23) h. The standard Dent’s model which was used to fit the experimental data, was successfully applied but only for values of relative humidity smaller than h < 0.9. The sorption isotherm was better fitted using the generalized Dent’s model, with the value of the b parameter equal to 0.947, the mass of the water saturating primary water binding sites equal to ΔM/m0 = 0.0209, and the fraction of unoccupied binding sites at h = 1 equal to 1/b1 = 0.104%. Proton free induction decays regi-stered for dry samples up to hydration level Δm/m0 = 0.128 were better described by the Abragam function, whereas for a higher hydration level the Gaussian function sufficiently described the proton signal of the samples.
We thank Prof. Agnieszka Klimek-Kopyra from the Department of Agroecology and Plant Production, University of Agriculture in Kraków, for providing research material.
Abdel-Aal, E.M., Rabalski, I., 2008. Bioactive compounds and their antioxidant capacity in selected primitive and modern wheat species. Open Agric. J. 2, 7-14,
Abragam, A., 1983. The principles of nuclear magnetism. Oxford University Press, Oxford, UK, p. 618.
Arthur, E., Tuller, M., Moldrup, P, de Jonge, L.W., 2015, Evaluation of theoretical and empirical water vapor sorption isotherm models for soils. Water Resour. Res. 55, 190-205.
Bacior, M., Nowak, P., Harańczyk, H., Patryas, S., Kijak, P., Ligęzowska, A., 2017. Extreme dehydration observed in Antarctic Turgidosculum complicatulum and in Prasiola crispa. Extremophiles 21, 331-343.
Bacior, M., Harańczyk, H., Nowak, P., Kijak, P., Marzec, M., Fitas, J., Olech, M.A., 2019. Low-temperature immobilization of water in Antarctic Turgidosculum and in Prasiola crispa. Part I. Turgidosculum complicatulum. Colloids Surf. B. 173, 869-875,
Bacior, M., Harańczyk, H., Nowak, P., Kijak, P., Marzec, J., Fitas, M., Olech, M.A., 2022. Low-temperature investigation of residual water bound in free-living Antarctic Prasiola crispa. Antarct. Sci. 34(5), 389-400. 10.1017/S0954102022000335.
Bewley, D.J., Bradford, K.J., Hillorst, H.W.M., Nonogaki, H., 2013. Germination. In: Seeds Springer, New York, NY.
Blahovec, J., Yanniotis, S., 2008. GAB generalized equation for sorption phenomena. Food Bioproc. Tech. 1, 82-90.
Bradford, K.J., Dahal P., Van Asbrouck, J., Kunusoth, K., Bello, P., Thompson, J., Wu, F., 2018. The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends Food Sci. Technol. 71, 84-93.
Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309-319.
Buitink, J., Leprince, O., 2008. Intracellular glasses and seed survival in the dry state. C. R. – Biol. 331, 788-795.
Casada, M.E., 2002. Moisture adsorption characteristics of wheat and barley. Trans ASAE 45 361-36,
Chang, B.S., Beauvais, R.M., Dong, A., Carpenter, J.F., 1996. Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: glass transition and protein conformation. Arch. Biochem. Biophys. 331, 249-258.
Chavhan, G.B., Babyn, P.S., Thomas, B., Shroff, M.M., Haacke E.M., 2009. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiograph. 29, 1433-1449.
Che Lah, N.H., Enshasy, H.A.E., Mediani, A., Azizan, K.A., Aizat, W.M., Tan, J.K., Afzan, A., Noor, N.M., Rohani, E.R., 2023. An insight into the behaviour of recalcitrant seeds by understanding their molecular changes upon desiccation and low temperature. Agron. 13(8), 2099.
Chen, Y., Li, C., Zhang, B., Yi, J., Yang, Y., Kong, C., Lei, C., Gong, M., 2019. The role of the late embryogenesis-abundant (LEA) protein family in development and the abiotic stress response: A Comprehensive Expression Analysis of Potato (Solanum tuberosum). Genes 10, 148.
Colville, L., 2017. Seed Storage. In: Thomas B., Murray B.G., Murray D.J. (Eds), Encyclopaedia of Applied Plant Sciences. Elsevier, Oxford, UK.
Dent, R.W., 1977. A multilayer theory for gas sorption. Part I: sorption of a single gas. Text. Res. J. 47, 145-152,
Derbyshire, W., Van den Bosch, M., van Dusschoten, D., MacNaughtan, W., Farat, I.A., Hemminga, M.A., Mitchell, J.R., 2004. Fitting of the beat pattern observed in NMR free-induction decay signals of concentrated carbohydrate-water solutions. J. Magn. Reson. 168, 278-283,
Ellis, R.H., 2022. Invited Review: Seed ageing, survival and the improved seed viability equation; forty years on. Seed Sci. and Technol. 50, 1-20,
Ellis, R.H., Hong, T.D., Roberts, E.H., Tao, K.L., 1990. Low moisture content limits to relations between seed longevity and moisture. Ann. Bot., 65, 493-504,
Ferreira, M.S.L., Martre, P., Mangavel, C., Girousse, C., Rosa, N.N., Samson, M.F., Morel, M.H., 2012. Physicochemical control of durum wheat grain filling and glutenin polymer assembly under different temperature regimes. J. Cereal Sci. 56, 58-66,
Golovina, E.A., Wolkers, W.F., Hoekstra, F.A., 1997. Long-term stability of protein secondary structure in dry seeds, Comp. Biochem. Physiol. 117A, 343-348.
Harańczyk, H., Strzałka, K., Jasiński, G., Mosna-Bojarska, K., 1996. The initial stages of wheat (Triticum aestivum, L.) seed imbibition as observed by proton nuclear magnetic relaxation. Colloids Surf. A: Physicochem. Eng. Asp. 115, 47-54.
Harańczyk, H., Bacior, M., Olech, M.A., 2008. Deep dehydration of Umbilicaria aprina thalli observed by proton NMR and sorption isotherm. Antarct. Sci. 20, 527-535,
Harańczyk, H., Bacior, M., Jamróz, J., Jemioła-Rzemińska, M., Strzałka, K., 2009a. Rehydration of digalactosyldiacylglycerol model membrane lyophilizates observed by NMR and sorption isotherm. Acta Phys. Pol. A. 115, 521-525,
Harańczyk, H., Bacior, M., Jastrzębska, P., Olech, M.A., 2009b. Deep dehydration of Antarctic lichen Leptogium puberulum Hue observed by NMR and sorption isotherm. Acta Phys. Pol. A. 115, 516-520,
Harańczyk, H., Czak, J., Nowak, P., Nizioł, J., 2010. Initial phases of DNA rehydration by NMR and sorption isotherm. Acta Phys. Pol. A. 117, 397-402,
Harańczyk, H., Kobierski, J., Nizioł, J., Hebda, E., Pielichowski, J., Zalitacz, D., Marzec, M., El-Ghayoury, A., 2013. Mild hydration of didecyldimethylammonium chloride modified DNA by 1H-nuclear magnetic resonance and by sorption isotherm. J. Appl. Phys. 113, 044702,
Harańczyk, H., Leja, A., Nowak, P., Baran, E., Strzałka, K., 2016. The effect of mild rehydration on freeze-dried dipalmitoylphosphatidylcholine (DPPC) multilamellar membranes as observed by proton NMR and sorption isotherm. Acta Phys. Pol. A. 129, 179-184, 10.12693/APhysPolA.129.179.
Harrington, J.F., 1960. Thumb Rules of Drying Seeds. Crops Soils, 13, 16-17.
Harrington, J.F., 1972. Seed storage and longevity. In: Seed Biology III; Ed. T.T. Kozlowski, Seed Biology, Insects, and Seed Collection, Storage, Testing and Certification, Academic Press, New York, 145-245,
Lemmens, E., De Brier, N., Goos, P., Smolders, E., Delcour, J.A., 2019. Steeping and germination of wheat (Triticum aestivum L.). I. Unlocking the impact of phytate and cell wall hydrolysis on bio-accessibility of iron and zinc elements. J. Cereal Sci. 90, 102847,
Leprince, O., Pellizzaro, A., Berriri, S., Buitink, J., 2017. Late seed maturation: Drying without dying. J. Exp. Bot. 68, 827-841,
Mitura, K., Cacak-Pietrzak, G., Feledyn-Szewczyk, B., Szablewski, T., Studnicki, M., 2023. Yield and Grain Quality of Common Wheat (Triticum aestivum L.) Depending on the Different Farming Systems (Organic vs. Integrated vs. Conventional), Plants 12(5), 1022,
Nadarajan, J., Walters, C.T., Pritchard, H., Ballesteros, D., Colville, L.P., 2023. Seed longevity-the evolution of knowledge and a conceptual framework. Plants 12(3), 471,
Pammenter, N.W., Berjak, P., 2007. A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Sci. Res., 9, 13-37,
Parihar, S.S., Dadlani, M., Mukhopadhyay, D., Lal, S.K., 2016. Seed dormancy, germination and seed storage in henna (Lawsonia inermis). Indian J. Agric. Sci. 86, 1201-1207,
Partanen, R., Marie, V., MacNaughtanb, W., Forssell, P., Farhat, I., 2004. 1H NMR study of amylose films plasticised by glycerol and water. Carbohydr. Polym. 56, 147-155,
Prestrelski, S.J., Tedeschi, N., Arakawa, T., Carpenter, J.F., 1993. Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers, Biophys. J. 65, 661-671, 10.1016/s0006-3495(93)81120-2.
Rockland L.B., Beuchat L.R., 1987. Water Activity: Theory and Applications to Food, Rockland L.B., Beuchated L.R. (Eds). New York, USA.
Roudaut, G., Farhat, I., Poirier-Brulez, F., Champion, D., 2009. Influence of water, temperature and sucrose on dynamics in glassy starch-based products studied by low field 1H NMR, Carbohydr. Polym. 77, 489-495,
Samapundo, S., Devlieghere, F., De Meulenaer, B., Debevere, J.M., 2007. Sorption isotherms and isosteric heats of sorption of whole yellow dent corn, J. Food Eng. 79, 168-175,
Shewry, P.R., 2018. Do ancient types of wheat have health benefits compared with modern wheat? J. Cereal Sci. 79, 469-476,
Shewry, P.R., Hey, S., 2015. The contribution of wheat to human diet and health, Food Energy Secur. 4, 178-202, 10.1002/fes3.64.
Slade, L., Levine, H., 1994. Water and the glass transition: dependence of the glass transition temperature on composition and chemical structure: special implications for flour functionality and cookie baking. J. Food Eng. 22, 143-188.
Solberg, S., Yndgaard, F., Andreasen, C., von Bothmer, R., Loskutov, I.G., Asdal, Å., 2020. Long-term storage and longevity of orthodox seeds: A Systematic Review. Front. Plant Sci. 11, 1007,
Van den Dries, I.J., van Dusschoten, D., Hemminga, A., 1998. Mobility in maltose-water glasses studied with 1H NMR. J. Phys. Chem. B 102, 10483-10489.
Vertucci, C.W., Roos, E.E., 1990. Theoretical Basis of Protocols for Seed Storage. Plant Physiol. 94, 1019-1023,
Vertucci, C.W., Roos, E.E., 1993. Theoretical Basis of Protocols for Seed Storage II. The influence of temperature on optimal moisture levels. Seed Sci. Res. 3, 201-213,
Vertucci, C.W., Roos, E.E., Crane, J., 1994. Theoretical basis of protocols for seed storage III. Optimum moisture contents for pea seeds stored at different temperatures. Ann. Bot. 74, 531-540,
Walters, C., 1998. Understanding the mechanisms and kinetics of seed aging, Seed Sci. Res. 8, 223-244,
Walters, C., Ballesteros, D., Vertucci, V.A., 2010. Structural mechanics of seed deterioration: Standing the test of time. Plant Sci. 179, 565-573,
Walters, C., Maschinski, J., 2019. Conventional seed banking to support species survival in the wild: Introduction. In: CPC Best Plant Conservation Practices to Support Species Survival in the Wild, Center for Plant Conservation, Escondido, CA, USA.
Walters, C., Wheeler, L.M., Grotenhuis, J.M., 2005. Longevity of seeds stored in genebank: species characteristics, Seed Sci. Res. 15, 1-20,
Yang, B., Yin, Y., Liu, C., Zhao, Z., Guo, M., 2021. Effect of germination time on the compositional, functional and antioxidant properties of whole wheat malt and its end-use evaluation in cookie-making. Food Chem. 349, 129125,
Yulianti, P.K., Yuniarti, N., Aminah, A., Suita, E., Sudrajat, D., Syamsuwida, D., 2020. Seed handling of specific forest tree species: Recalcitrant and intermediate seed. In: Proc. IOP Conf. Series: Earth and Environmental Science, Changchun, China.
Journals System - logo
Scroll to top