RESEARCH PAPER
Chemical composition and physical parameters of particles as factors of variability of the sorption properties of protein powder preparations
 
More details
Hide details
1
Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland
 
2
Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture in Kraków, Balicka 122, 30-149 Kraków, Poland
 
3
Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture in Kraków, Balicka 122, 30-149 Kraków, Poland
 
 
Final revision date: 2025-01-14
 
 
Acceptance date: 2025-01-21
 
 
Publication date: 2025-04-30
 
 
Corresponding author
Aneta Ocieczek   

Katedra Zarządzania Jakością Wydział Zarządzania i Nauk o Jakości, Uniwersytet Morski w Gdyni, Morska 81-87, 81-225, Gdynia, Poland
 
 
Int. Agrophys. 2025, 39(3): 255-267
 
HIGHLIGHTS
  • The best tool for determining the sorption capacity of powders is the GAB model
  • The sorption capacity of plant powders depends on the size of their particles
  • The sorption capacity of plant powders determines the share of fiber
KEYWORDS
TOPICS
ABSTRACT
Plant powders with high protein concentration are of growing interest to consumers. The aim of the study was to identify the relationship between sorption properties and the chemical composition and physical parameters of high-protein powders from pumpkin, pea, sunflower, rice, and hemp. Sorption properties were estimated using Brunauer, Emmet, and Teller; Guggenheim, Anderson, and de Boer; and Peleg models based on data obtained with the static-desiccator method. The chemical composition was examined using chemical methods, while the physical parameters were determined using the Morphologi GS automatic structure analyzer. A synthetic evaluation of the correlation between sorption properties and the chemical composition and physical parameters of powder particles was carried out based on the comparative analysis of multiple regression equations. It was found that the sorption properties of high-protein plant powders were mainly determined by their chemical composition, in which the share of fiber turned out to be particularly important. Among the physical parameters, the diameter and circularity of particles turned out to be important.
CONFLICT OF INTEREST
The authors do not declare any conflict of interest.
REFERENCES (46)
1.
Andrade, R.D., Lemus R., Pérez C.E., 2011. Models of sorption of isotherms for food: uses and limitations. Vitae 18, 3, 325-334.
 
2.
Aviara, N.A., 2020. Moisture Sorption Isotherms and Isotherm Model Performance Evaluation for Food and Agricultural Products. In: Sorption in 2020s, G. Kyzas and N. Lazaridis, (Eds), IntechOpen, Chapter 8, https://doi.org/10.5772/intech....
 
3.
Basu, S., Shivhare, U.S., Mujumdar, A.S., 2006. Models for sorption isotherms for foods: A Review. Dry Technol. 24: 8, 917-930. https://doi.org/10.1080/073739....
 
4.
Boye, J.I., Aksay, S., Roufik, S., Ribereau, S., Mondor, M., Farnworth, E., et al., 2010. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res. Int. 43(2), 537-546. https://doi.org/10.1016/j.food....
 
5.
Carlberg, C., 2012. Statistical Analysis: Microsoft Excel 2010. Helion, Gliwice.
 
6.
Condon, J.B., 2019. Surface area and porosity determinations by physisorption: measurement, classical theories and quantum theory. Elsevier.
 
7.
Day, L., 2013. Proteins from land plants – potential resources for human nutrition and food security. Trends Food Sci Tech. 32(1), 25-42. https://doi.org/10.1016/j.tifs....
 
8.
Ding, H., Yu, W., Boiarkina, I., Depree, N., Young, B.R., 2020. Effects of morphology on the dispersibility of instant whole milk powder. J. Food Eng. 276, 109841. https://doi.org/10.1016/j.jfoo....
 
9.
Fabian, C., Ju, Y.-H., 2011. A review on rice bran protein: its properties and extraction methods. Crit Rev Food Sci Nutr. 51(9), 816-827. https://doi.org/10.1080/104083....
 
10.
Figura, L.O., Teixeira, A.A., 2007. Food Physics. Physical Properties – Measurement and Applications. Springer-Verlag Berlin Heidelberg.
 
11.
Fu, Q., Zhao, J., Rong, S., Han, Y., Liu, F., Chu, Q., Wang, S., Chen, S., 2023. Research advances in plant protein-based products: Protein sources, processing technology, and food applications. JAFC 71(42), 15429-15444. https://doi.org/10.1021/acs.ja....
 
12.
Gonzalez-Perez, S., Vereijken, J.M., 2007. Sunflower proteins: overview of their physicochemical, structural and functional properties. J. Sci. Food Agric. 87, 2173-2191. https://doi.org/10.1002/jsfa.2....
 
13.
Hadnađev, M., Dapčević-Hadnađev, T., Lazaridou, A., Moschakis, T., Michaelidou, A.M., Popović S., et al., 2018. Hempseed meal protein isolates prepared by different isolation techniques. Part I. Physicochemical properties. Food Hydrocoll. 79, 526-533. https://doi.org/10.1016/j.food....
 
14.
Hébrard, A., Oulahna, D., Galet, L., Cuq, B., Abecassis, J., Fages, J., 2003. Hydration properties of durum wheat semolina: influence of particle size and temperature. Powder Technol. 130(1-3), 211-218. https://doi.org/10.1016/S0032-....
 
15.
Karel, M., 1975. Water activity and food preservation. In: Physical principles of food preservation. Principles of food science. Part 2. M. Karel, O.R. Fennema, D.B. Lund (Eds), New York, Marcel Dekker, 237-263.
 
16.
Kludský, M., Vopička, O., Matějka, P., Hovorka, Š., Friess, K., 2018. Nafion® modified with primary amines: chemical structure, sorption properties and pervaporative separation of methanol-dimethyl carbonate mixtures. Eur. Polym. J. 99, 268-276. https://doi.org/10.1016/j.eurp....
 
17.
Labuza, T.P., Altunakar, B., 2020. Water activity prediction and moisture sorption isotherms. In: Water activity in foods: fundamentals and applications, G.V. Barbosa-Cánovas, Jr.A.J. Fontana, S.J. Schmidt, T.P. Labuza, (Eds), Blackwell Publishing and the Institute of Food Technologists, Chapter 7, pp. 161-205. https://doi.org/10.1002/978111....
 
18.
Lewicki, P.P., 1997. The applicability of the GAB model to food water sorption isotherms. IJFST 32, 553-557. https://doi.org/10.1111/j.1365....
 
19.
Lewicki, P.P., 2004. Water as the determinant of food engineering properties. A review. J. Food Eng. 61(4), 483-495. https://doi.org/10.1016/S0260-....
 
20.
Łomnicki, A., 2006. An introduction to statistics for naturalists. Wydawnictwo Naukowe PWN, Warszawa.
 
21.
Mamone, G., Picariello, G., Ramondo, A., Nicolai, M.A., Ferranti, P., 2019. Production, digestibility and allergenicity of hemp (Cannabis sativa L.) protein isolates. Food Res. Int. 115, 562-571. https://doi.org/10.1016/j.food....
 
22.
Marousis, S.N., Karathanos, V.T., Saravacos G.D., 1991. Effect of physical structure of starch materials on water diffusivity. JFPP 15: 183-195. https://doi.org/10.1111/j.1745....
 
23.
McMinn, W.A.M., Magee, T.R.A., 2003. Thermodynamic properties of moisture sorption of potato. J. Food Eng. 60(2), 157-165. https://doi.org/10.1016/S0260-....
 
24.
Merkus, H.G., 2009. Particle size measurements: fundamentals, practice, quality (Vol. 17). Springer Sci. Business Media.
 
25.
Mukherjee, A.K., 2018. Physicochemical properties and quality of food lipids. State-of-the-Art Technologies in Food Science: Human Health, Emerging Issues and Specialty Topics, 251.
 
26.
Murphy, E.G., Regost, N.E., Roos, Y.H., Fenelon, M.A., 2020. Powder and Reconstituted Properties of Commercial Infant and Follow-On Formulas. Foods 9, 84. doi:10.3390/foods9010084.
 
27.
Murrieta-Pazos, I., Galet, L., Patry, S., Gaiani, C., Scher, J., 2014. Evolution of particle structure during water sorption observed on different size fractions of durum wheat semolina. Powder Technology, Elsevier 255 (SI), 66-73. 10.1016/j.powtec.2013.10.049.
 
28.
Ocieczek, A., Mesinger, D., Toczek, H., 2022. Hygroscopic properties of three Cassava (Manihot esculenta Crantz) starch products: Application of BET and GAB models. Foods 11(13), 1966. https://doi.org/10.3390/foods1....
 
29.
Ocieczek, A., Makała H., 2019. Sorption properties of selected dietary fibers. Acta Agroph. 26(2), 5-18. https://doi.org/10.31545/aagr/....
 
30.
Ocieczek, A., Skotnicka, M., Baranowska, K., 2017. Sorptive properties of modified maize starch as indicators of their quality. Int. Agrophys. 31(3), 383-392. https://doi.org/10.1515/intag-....
 
31.
Pabst, W., Gregorova, E., 2007. Characterization of particles and particle systems. ICT Prague, 122, 122.
 
32.
Paderewski, M., 1999. Adsorption processes in chemical engineering. WNT, Warszawa.
 
33.
Pałacha, Z., Sas A., 2016. Sorption properties of selected species of rice. Acta Agroph. 23(4), 681-694.
 
34.
Pałacha, Z., Sitkiewicz I., 2010. Physical properties of food. WNT, Warszawa.
 
35.
Peleg, M., 1993. Assessment of a semi‐empirical four parameter general model for sigmoid moisture sorption isotherms. J. Food Process Eng. 16(1), 21-37. https://doi.org/10.1111/j.1745....
 
36.
Pojić, M., Mišan, A., Sakač, M., Dapčević-Hadnađev, T., Šarić, B., Milovanović, I., Hadnađev M., 2014. Characterization of byproducts originating from hemp oil processing. J. Agric. Food Chem. 62, 51, 12436-12442. https://doi.org/10.1021/jf5044....
 
37.
Raval, N., Maheshwari, R., Kalyane, D., Youngren-Ortiz, S.R., Chougule, M.B., Tekade, R.K., 2019. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In: Basic fundamentals of drug delivery. R.K. Tekade (Ed.). Academic Press, Chapter 10, pp. 369-400. https://doi.org/10.1016/B978-0....
 
38.
Reid, D.S., 2020. Water Activity: Fundamentals and Relationships. In: Water activity in foods: fundamentals and applications. G.V. Barbosa-Cánovas, Jr.A.J. Fontana, S.J. Schmidt, T.P. Labuza (Eds), Blackwell Publishing and the Institute of Food Technologists, Chapter 2, pp. 199-214. https://doi.org/10.1002/978111....
 
39.
Roudaut, G., 2020. Water Activity and Physical Stability. In: Water activity in foods: fundamentals and applications. G.V. Barbosa-Cánovas, Jr.A.J. Fontana, S.J. Schmidt, T.P. Labuza (Eds), Blackwell Publishing and the Institute of Food Technologists, Chapter 10, pp. 199-214. https://doi.org/10.1002/978111....
 
40.
Sandberg, A.S., 2011. Developing functional ingredients: a case study of pea protein. In: Functional foods: Concept to product. M. Saarela (Ed.). Cambridge, UK: Woodhead Publishing Ltd, pp. 358-382. https://doi.org/10.1533/978085....
 
41.
Shih, F.F., 2003. An update on the processing of high-protein rice products. Nahrung-Food 47, 420-424. https://doi.org/10.1002/food.2....
 
42.
Tapia, M.S., Alzamora, S.M., Chirife J., 2020. Effects of water activity (aw) on microbial stability as a hurdle in food preservation. In: Water activity in foods: Fundamentals and applications. G.V. Barbosa-Cánovas, Jr.A.J. Fontana, S.J. Schmidt, T.P. Labuza (Eds). Blackwell Publishing and the Institute of Food Technologists, Chapter 14, pp. 323-355. https://doi.org/10.1002/978111....
 
43.
Venir, E., Maltini E., 2013. Relevance of physical properties in the stability of plant-based food products. IJEB 51, 895-904. http://nopr.niscpr.res.in/hand....
 
44.
Vinayashree, S., Vasu P., 2021. Biochemical, nutritional and functional properties of protein isolate and fractions from pumpkin (Cucurbita moschata var. Kashi Harit) seeds. Food Chem. 340, 128177. https://doi.org/10.1016/j.food....
 
45.
Vopička, O., Lanč M., Friess, K., 2022. Phenomenology of vapour sorption in polymers of intrinsic microporosity PIM-1 and PIM-EA-TB: envelopment of sorption isotherms. Curr. Opin. Chem. Eng. 35. https://doi.org/10.1016/j.coch....
 
46.
Xiaonan, S., Tianyi, Z., Xin, Z., Lianzhou, J., 2024. High-Moisture Extrusion of Plant Proteins: Fundamentals of Texturization and Applications. Annu. Rev. Food Sci. Technol. 15, 125-149. https://doi.org/10.1146/annure....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top