RESEARCH PAPER
Comparing the yield and the nutritional and nutraceutical composition of pigmented maize landraces (Zea mays L.) grown under agroecological and conventional management
More details
Hide details
1
Department of Agricultural Science, Faculty of Higher Studies Cuautitlan, Universidad Nacional Autónoma de México, Mexico
2
Department of Mathematics, Faculty of Higher Studies Cuautitlan, Universidad Nacional Autónoma de México, Mexico
3
Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Universidad Autónoma de Querétaro, Mexico
These authors had equal contribution to this work
Final revision date: 2025-03-10
Acceptance date: 2025-03-11
Publication date: 2025-05-29
Corresponding author
Elisa Domínguez-Hernández
Department of Mathematics, Faculty of Higher Studies Cuautitlan, Universidad Nacional Autónoma de México, Mexico
Int. Agrophys. 2025, 39(3): 331-346
HIGHLIGHTS
- Agroecological management improved grain yield
- Anthocyanin-rich landraces responded better to agroecological management
- Carotenoid-rich landraces performed better under conventional management
- PCA showed organic landraces were distinguishable from conventionally grown ones
KEYWORDS
TOPICS
ABSTRACT
Maize, a global staple, faces sustainability challenges in conventional farming. This study investigated, in a participatory way, the impact of agroecological versus conventional practices on maize yield and grain composition, focusing on three Mexican landraces of varying colours (yellow, blue, and pink). Measures included grain yield components, bromatological composition, bioactive characterisation, and antioxidant activity to address the concerns of both producers and consumers of maize grains. Agroecological management, incorporating manure, and manual/mechanical pest control yielded 3x more grain than conventional methods. Agroecological grains showed lower fat, protein, and dietary fibre values (p<0.001). Bioactives varied significantly (p≤0.026): anthocyanins, carotenoids, flavonoids, and condensed tannins were influenced by variety, while cultivation practices influenced phenolics. Anthocyanin-rich varieties (blue and pink) responded favourably to agroecological management, enhancing soil fertility in high precipitation conditions. Carotenoid-rich maize showed better responses to conventional fertilisation. While agroecological management did not significantly alter grain composition, it outperformed the yield of conventional methods under excess rainfall, increasing nutrient production per unit area. This suggests agroecological approaches could enhance food security for maize producers in the short term and potentially the health benefits of landrace maize consumption, emphasising the importance of sustainable practices for smallholder agriculture and local food systems.
FUNDING
This work was supported by CONAHCYT under the national grants EPM-2020-363301; and by the UAQ and FESC-UNAM for additional funding through the PAPIME and Catedras de Investigación programmes (Proj. Nos PE211224, CI 2266 and CI2454).
CONFLICT OF INTEREST
The authors declare that there are no conflicts of interest.
REFERENCES (87)
1.
Acosta-Estrada, B.A., Gutiérrez-Uribe, J.A., Serna-Saldivar, S.O., 2018. Minor constituents and phytochemicals of the Kernel. In: Corn: Chemistry and Technology, 3rd Ed. 369-403.
https://doi.org/10.1016/B978-0....
2.
Alhdad, G.M., Seal, C.E., Al-Azzawi, M.J., Flowers, T.J., 2013. The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: The role of antioxidants. Environ. Exp. Bot. 87, 120-125.
https://doi.org/10.1016/j.enve....
3.
Altieri, M.A., Nicholls, C.I., 2017. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Change 140, 33-45.
https://doi.org/10.1007/s10584....
4.
Altieri, M.A., Nicholls, C.I., Montalba, R., 2017. Technological approaches to sustainable agriculture at a crossroads: An agroecological perspective. Sustainability (Switzerland) 9, 1-13.
https://doi.org/10.3390/su9030....
5.
Bezner Kerr, R., Madsen, S., Stüber, M., Liebert, J., Enloe, S., Borghino, N., et al., 2021. Can agroecology improve food security and nutrition? A review. Glob Food Sec. 29.
https://doi.org/10.1016/j.gfs.....
6.
Chatham, L.A., West, L., Berhow, M.A., Vermillion, K.E., Juvik, J.A., 2018. Unique flavanol-anthocyanin condensed forms in apache red purple corn. J. Agric. Food Chem. 66, 10844-10854.
https://doi.org/10.1021/acs.ja....
7.
Chauhan, N., Sankhyan, N.K., Sharma, R.P., Singh, J., Gourav, 2020. Effect of long-term application of inorganic fertilizers, farm yard manure and lime on wheat (Triticum aestivum L.) productivity, quality and nutrient content in an acid alfisol. J. Plant Nutr. 43, 2569-2578.
https://doi.org/10.1080/019041....
8.
Chen, C., Chen, S., Jha, R.K., Cotrozzi, L., Nali, C., Lorenzini, G., et al., 2020. Phenol metabolism of two cultivars of durum wheat (Triticum durum Desf.) as affected by ozone and flooding stress. J. Agron. Crop. Sci. 206, 338-351.
https://doi.org/10.1111/jac.12....
9.
Colombo, R., Ferron, L., Papetti, A., 2021. Colored Corn: An up-date on metabolites extraction, health implication, and potential use. Molecules 26, 199.
https://doi.org/10.3390/molecu....
10.
CONABIO, 2017. Ecosystems and agro-biodiversity across small and large-scale maize production systems. TEEB Agric. Food, UNEP, Geneva.
11.
Cotler, H., Corona, J.A., Mauricio Galeana-Pizaña, J., 2020. Soil erosion and food deficiency in Mexico: A first approach. Investigaciones Geograficas 101, e59976.
https://doi.org/10.14350/rig.5....
12.
Cruz-Carrión, Á., Ruiz de Azua, M.J., Muguerza, B., Mulero, M., Bravo, F.I., Arola-Arnal, A., Suarez, M., 2023. Organic vs. non-organic plant-based foods-a comparative study on phenolic content and antioxidant capacity. Plants 12.
https://doi.org/10.3390/plants....
13.
D'Amato, R., De Feudis, M., Guiducci, M., Businelli, D., 2019. Zea mays L. Grain: increase in nutraceutical and antioxidant properties due to se fortification in low and high water regimes. J. Agric. Food. Chem. 67, 7050-7059.
https://doi.org/10.1021/acs.ja....
14.
de la Cruz, V.Y.V., Tantriani, Cheng, W., Tawaraya, K., 2023. Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis. Agric. Syst. 211, 103732.
https://doi.org/10.1016/j.agsy....
15.
Dhaliwal, S.S., Naresh, R.K., Mandal, A., Walia, M.K., Gupta, R.K., Singh, R., et al., 2019. Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: a review. J. Plant Nutr. 42, 2873-2900.
https://doi.org/10.1080/019041....
17.
Domínguez Hernández, M.E., Domínguez Hernández, E., Martínez-Barrera, G., Domínguez Hernández, A., Zepeda-Bautista, R., 2022a. Transdisciplinary interventions to improve the sustainability of maize agroecosystems: A Case Study from Mexico. Transdiscipl. J. Eng. Sci. 13, 85-99.
https://doi.org/10.22545/2022/....
18.
Domínguez-Hernández, E., Gaytán-Martínez, M., Gutiérrez-Uribe, J.A., Domínguez-Hernández, M.E., 2022b. The nutraceutical value of maize (Zea mays L.) landraces and the determinants of its variability: A review. J. Cereal Sci. 103, 103399.
https://doi.org/10.1016/j.jcs.....
19.
Domínguez‐Hernández, E., Gutiérrez‐Uribe, J.A., Domínguez‐Hernández, M.E., Loarca‐Piña, G.F., Gaytán‐Martínez, M., 2023. In search of better snacks: ohmic‐heating nixtamalized flour and amaranth addition increase the nutraceutical and nutritional potential of vegetable‐enriched tortilla chips. J. Sci. Food Agric. 103, 2773-2785.
https://doi.org/10.1002/jsfa.1....
20.
Dominguez-Hernandez, M.E., Zepeda-Bautista, R., Dominguez-Hernandez, E., Valderrama-Bravo, M. del C., Hernández-.
21.
Simón, L.M., 2020. Effect of lime water - manure organic fertilizers on the productivity, energy efficiency and profitability of rainfed maize production. Arch. Agron. Soil Sci. 66, 370-385.
https://doi.org/10.1080/036503....
22.
Dominguez-Hernandez, M.E., Zepeda-Bautista, R., Valderrama-Bravo, M.C., Dominguez-Hernandez, E., Hernandez-.
23.
Aguilar, C., 2018. Sustainability assessment of traditional maize (Zea mays L.) agroecosystem in Sierra Norte of Puebla, Mexico. Agroecol. Sustain. Food Systems 42, 383-406.
https://doi.org/10.1080/216835....
24.
Dubey, S., Kuruwanshi, V., Ghodke, P., Mahajan, V., 2020. Biochemical and yield evaluation of onion (Allium cepa L.) genotypes under waterlogging condition. Int. J. Chem. Stud. 8, 2036-2040.
https://doi.org/10.22271/chemi....
25.
Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., Prasanna, B.M., 2022. Global maize production, consumption and trade: trends and R&D implications. Food Secur. 14, 1295-1319.
https://doi.org/10.1007/s12571....
26.
FAOSTAT, 2023. Food Agriculture Organization of the United Nations FAOSTAT [WWW Document]. FAO StatFAO Statistical Database. URL
http://www.fao.org/faostat/es/... (accessed 12.29.23).
27.
Fischer, S., Hilger, T., Piepho, H.P., Jordan, I., Karungi, J., Towett, E., et al., 2020. Soil and farm management effects on yield and nutrient concentrations of food crops in East Africa. Sci. Total Environ. 716, 137078.
https://doi.org/10.1016/j.scit....
28.
Flint-Garcia, S.A., Bodnar, A.L., Scott, M.P., 2009. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theoretical Applied Genetics 119, 1129-1142.
https://doi.org/10.1007/s00122....
29.
Gálvez Ranilla, L., Rios-Gonzales, B.A., Ramírez-Pinto, M.F., Fuentealba, C., Pedreschi, R., Shetty, K., 2021. Primary and phenolic metabolites analyses, in vitro health-relevant bioactivity and physical characteristics of purple corn (Zea mays L.) grown at two andean geographical locations. Metabolites 11, 722.
https://doi.org/10.3390/metabo....
30.
Giordano, D., Beta, T., Gagliardi, F., Blandino, M., 2018a. Influence of agricultural management on phytochemicals of colored corn genotypes (Zea mays L.). Part 2: Sowing tTime. J. Agric. Food Chem. 66, 4309-4318.
https://doi.org/10.1021/acs.ja....
31.
Giordano, D., Beta, T., Vanara, F., Blandino, M., 2018b. Influence of agricultural management on phytochemicals of colored corn genotypes (Zea mays L.). Part 1: Nitrogen fertilization. J. Agric. Food Chem. 66, 4300-4308.
https://doi.org/10.1021/acs.ja....
32.
Guzzon, F., Arandia Rios, L.W., Caviedes Cepeda, G.M., Céspedes Polo, M., Chavez Cabrera, A., Muriel Figueroa, J., et al., 2021. Conservation and use of latin american maize diversity: pillar of nutrition security and cultural heritage of humanity. Agronomy 11, 172.
https://doi.org/10.3390/agrono....
33.
Herrera-Sotero, M.Y., Cruz-Hernández, C.D., Trujillo-Carretero, C., Rodríguez-Dorantes, M., García-Galindo, H.S., Chávez-Servia, J.L., et al., 2017. Antioxidant and antiproliferative activity of blue corn and tortilla from native maize. Chem. Cent. J. 11, 110.
https://doi.org/10.1186/s13065....
34.
Hwang, T., Ndolo, V.U., Katundu, M., Nyirenda, B., Bezner-Kerr, R., Arntfield, S., Beta, T., 2016. Provitamin A potential of landrace orange maize variety (Zea mays L.) grown in different geographical locations of central Malawi. Food Chem. 196, 1315-1324.
https://doi.org/10.1016/j.food....
35.
INEGI, SADER, 2019. Encuesta Nacional Agropecuaria. México.
36.
Kaur, G., Zurweller, B.A., Nelson, K.A., Motavalli, P.P., Dudenhoeffer, C.J., 2017. Soil waterlogging and nitrogen fertilizer management effects on corn and soybean yields. Agron. J. 109, 97-106.
https://doi.org/10.2134/agronj....
37.
Keleman, A., Hellin, J., Bellon, M.R., 2009. Maize diversity, rural development policy, and farmers' practices: Lessons from Chiapas, Mexico. Geographical J. 175, 52-70.
https://doi.org/10.1111/j.1475....
38.
Khang, D.T., Thu Ha, P.T., Thi Lang, N., Tuyen, P.T., Minh, L.T., Minh, T.N., et al., 2016. Involvement of phenolic compounds in anaerobic flooding germination of rice (Oryza sativa L.). Int. Letters Natural Sci. 56, 73-81.
https://doi.org/10.56431/p-9lh....
40.
Kuhnen, S., Menel Lemos, P.M., Campestrini, L.H., Ogliari, J.B., Dias, P.F., Maraschin, M., 2011. Carotenoid and anthocyanin contents of grains of Brazilian maize landraces. J. Sci. Food Agric. 91, 1548-1553.
https://doi.org/10.1002/jsfa.4....
41.
Landoni, M., Puglisi, D., Cassani, E., Borlini, G., Brunoldi, G., Comaschi, C., et al., 2020. Phlobaphenes modify pericarp thickness in maize and accumulation of the fumonisin mycotoxins. Sci. Rep. 10, 1-9.
https://doi.org/10.1038/s41598....
42.
Landoni, M., Scapin, A., Cassani, E., Borlini, G., Follador, A., Giupponi, L., et al., 2021. Comparison among four maize varieties in conventional and low input cultivation. Maydica 65, 1-13.
44.
Loarca-Piña, G., Neri, M., Figueroa, J. de D.J.D., Castaño-Tostado, E., Ramos-Gómez, M., Reynoso, R., et al., 2019. Chemical characterization, antioxidant and antimutagenic evaluations of pigmented corn. J. Food Sci. Technol. 56, 3177-3184.
https://doi.org/10.1007/s13197....
45.
Logrieco, A., Battilani, P., Leggieri, M.C., Jiang, Y., Haesaert, G., Lanubile, A., et al., 2021. Perspectives on global mycotoxin issues and management from the mycokey maize working group. Plant Dis. 105, 525-537.
https://doi.org/10.1094/PDIS-0....
46.
López-Martínez, L.X., Parkin, K.L., Garcia, H.S., 2012. Effect of processing of corn for production of masa, tortillas and tortilla chips on the scavenging capacity of reactive nitrogen species. Int. J. Food Sci. Technol. 47, 1321-1327.
https://doi.org/10.1111/j.1365....
47.
Lux, P.E., Schneider, J., Müller, F., Wiedmaier-Czerny, N., Vetter, W., Weiß, T.M., et al., 2021. Location and variety but not phosphate starter fertilization influence the profiles of fatty acids, carotenoids, and tocochromanols in kernels of modern corn (Zea mays L.) hybrids cultivated in Germany. J. Agric. Food Chem. 69, 2845-2854.
https://doi.org/10.1021/acs.ja....
48.
Mardero, S., Schmook, B., López-Martínez, J.O., Cicero, L., Radel, C., Christman, Z., 2018. The Uneven influence of climate trends and agricultural policies on maize production in the Yucatan Peninsula, Mexico. Land (Basel) 7, 1-20.
https://doi.org/10.3390/land70....
49.
Martínez-Martínez, R., Vera-Guzmán, A.M., Chávez-Servia, J.L., Bolaños, E.N.A., Carrillo-Rodríguez, J.C., Pérez-Herrera, A., 2019. Bioactive compounds and antioxidant activities in pigmented maize landraces. Interciencia 44, 549-556.
50.
Matta, T.J., Reeves, M., 2020. Pesticides and Soil Health: State of the Science and Viable Alternatives, Pesticide Action Network Report. Berkeley, CA, USA.
51.
McLean-Rodríguez, F.D., Camacho-Villa, T.C., Almekinders, C.J.M., Pè, M.E., Dell'Acqua, M., Costich, D.E., 2019. The abandonment of maize landraces over the last 50 years in Morelos, Mexico: a tracing study using a multi-level perspective. Agric. Human Values 36, 651-668.
https://doi.org/10.1007/s10460....
52.
Mendoza-Díaz, S., Ortiz-Valerio, M. del C., Castaño-Tostado, E., Figueroa-Cárdenas, J. de D., Reynoso-Camacho, R., Ramos-Gómez, M., et al., 2012. Antioxidant capacity and antimutagenic activity of anthocyanin and carotenoid extracts from nixtamalized pigmented creole maize races (Zea mays L.). Plant Foods Human Nutrition 67, 442-449.
https://doi.org/10.1007/s11130....
53.
Mendoza-Mendoza, C.G., Mendoza-Castillo, M. del C., Castillo-González, F., Sánchez-Ramírez, F.J., Delgado-Alvarado, A., Pecina-Martínez, J.A., 2019. Agronomic performance and grain yield of mexican purple corn populations from Ixtenco, Tlaxcala. Maydica 64.
54.
Messias, R. da S., Galli, V., e Silva, S.D. dos A., Rombaldi, C.V., 2014. Carotenoid biosynthetic and catabolic pathways: Gene expression and carotenoid content in grains of maize landraces. Nutrients 6, 546-563.
https://doi.org/10.3390/nu6020....
55.
Mutyambai, D.M., Bass, E., Luttermoser, T., Poveda, K., Midega, C.A.O., Khan, Z.R., et al., 2019. More than "push" and "pull"? Plant-soil feedbacks of maize companion cropping increase chemical plant defenses against herbivores. Front Ecol. Evol. 7.
https://doi.org/10.3389/fevo.2....
56.
Nankar, A., Grant, L., Scott, P., Pratt, R.C., 2016. Agronomic and kernel compositional traits of blue maize landraces from the southwestern United states. Crop. Sci. 56, 2663-2674.
https://doi.org/10.2135/cropsc....
57.
Narvekar, A.S., Tharayil, N., 2021. Nitrogen fertilization influences the quantity, composition, and tissue association of foliar phenolics in strawberries. Front Plant Sci. 12, 1-16.
https://doi.org/10.3389/fpls.2....
58.
Nascimento, L.E.S., Arriola, N.D.A., da Silva, L.A.L., Faqueti, L.G., Sandjo, L.P., de Araújo, C.E.S., et al., 2020. Phytochemical profile of different anatomical parts of jambu (Acmella oleracea (L.) R.K. Jansen): A comparison between hydroponic and conventional cultivation using PCA and cluster analysis. Food Chem. 332, 127393.
https://doi.org/10.1016/j.food....
60.
Omondi, E.C., Nichols, K., Wagner, M., Mukherjee, A., 2022. Long-term organic and conventional farming effects on nutrient density of oats. Renewable Agric. Food Systems 37(2), 113-127.
https://doi.org/10.1017/S17421....
61.
Orsák, M., Kotíková, Z., Hnilička, F., Lachman, J., Stanovič, R., 2020. Effect of drought and waterlogging on hydrophilic antioxidants and their activity in potato tubers. Plant Soil Environ. 66, 128-134.
https://doi.org/10.17221/520/2....
62.
Pais, I.P., Moreira, R., Semedo, J.N., Ramalho, J.C., Lidon, F.C., Coutinho, J., et al., 2023. Wheat crop under waterlogging: Potential soil and plant effects. Plants 12, 1-15.
https://doi.org/10.3390/plants....
63.
Palacios-Rojas, N., McCulley, L., Kaeppler, M., Titcomb, T.J., Gunaratna, N.S., Lopez-Ridaura, S., et al., 2020. Mining maize diversity and improving its nutritional aspects within agro-food systems. Compr. Rev. Food Sci. Food Saf. 19, 1809-1834.
https://doi.org/10.1111/1541-4....
64.
Palomo-Campesino, S., García-Llorente, M., González, J.A., 2021. Characterizing agroecological and conventional farmers: uncovering their motivations, practices, and perspectives toward agriculture. Agroecol. Sustai. Food Systems 45, 1399-1428.
https://doi.org/10.1080/216835....
65.
Peniche-Pavía, H.A., Tiessen, A., 2020. Anthocyanin profiling of maize grains using DIESI-MSQD reveals that cyanidin-based derivatives predominate in purple corn, whereas pelargonidin-based molecules occur in red-pink varieties from Mexico. J. Agric. Food Chem. 68, 5980-5994.
https://doi.org/10.1021/acs.ja....
66.
Pimentel, D., Hepperly, P., Hanson, J., Douds, D., Seidel, R., 2005. Environmental, energetic, and economic comparisons of organic and conventional farming systems. Bioscience 55, 573-582.
https://doi.org/10.1641/0006-3....
67.
Popa, M.E., Mitelut, A.C., Popa, E.E., Stan, A., Popa, V.I., 2019. Organic foods contribution to nutritional quality and value. Trends Food Sci. Technol. 84, 15-18.
https://doi.org/10.1016/j.tifs....
68.
Ren, F., Reilly, K., Gaffney, M., Kerry, J.P., Hossain, M., Rai, D.K., 2017. Evaluation of polyphenolic content and antioxidant activity in two onion varieties grown under organic and conventional production systems. J. Sci. Food Agric. 97, 2982-2990.
https://doi.org/10.1002/jsfa.8....
69.
Ricciardi, V., Ramankutty, N., Mehrabi, Z., Jarvis, L., Chookolingo, B., 2018. How much of the world's food do smallholders produce? Glob. Food Sec. 17, 64-72.
https://doi.org/10.1016/j.gfs.....
70.
Rodríguez-Salinas, P.A.P.A., Zavala-García, F., Urías-Orona, V., Muy-Rangel, D., Heredia, J.B.J.B., Niño-Medina, G., 2020. Chromatic, nutritional and nutraceutical properties of pigmented native maize (Zea mays L.) genotypes from the Northeast of Mexico. Arab. J. Sci. Eng. 45, 95-112.
https://doi.org/10.1007/s13369....
71.
Salinas Moreno, Y., Aragón Cuevas, F., Ybarra Moncada, C., Aguilar Villarreal, J., Altunar López, B., Sosa Montes, Y.E., 2013. Physical characterization and chemical composition of maize races with blue/purple grain from tropical and subtropical regions of Oaxaca. Revista Fitotecnia Mexicana 36, 23-31.
https://doi.org/10.35196/rfm.2....
72.
Salinas-Moreno, Y., Pérez-Alonso, J.J., Vázquez-Carrillo, G., Aragón-Cuevas, F., Velázquez-Cardelas, G.A., 2012. Anthocyanins and antioxidant activity in maize (Zea mays L.) of the Chalqueño, Elotes Cónicos and Bolita breeds. Agrociencia 46, 693-706.
73.
Santillán-Fernández, A., Salinas-Moreno, Y., Valdez-Lazalde, J.R., Carmona-Arellano, M.A., Vera-López, J.E., Pereira-Lorenzo, S., 2021. Relationship between maize seed productivity in Mexico between 1983 and 2018 with the adoption of genetically modified maize and the resilience of local races. Agriculture (Switzerland) 11.
https://doi.org/10.3390/agricu....
75.
Serna-Saldívar, S.O., Gutiérrez-Uribe, J.A., Mora-Rochin, S., García-Lara, S., 2013. Nutraceutical potential of maize criollos and changes during traditional and extrusion processing. Revista Fitotecnia Mexicana 36, 295-304.
https://doi.org/10.35196/rfm.2....
77.
Suriano, S., Balconi, C., Valoti, P., Redaelli, R., 2021. Comparison of total polyphenols, profile anthocyanins, color analysis, carotenoids and tocols in pigmented maize. LWT 144, 111257.
https://doi.org/10.1016/j.lwt.....
78.
Sytar, O., Bosko, P., Živčák, M., Brestic, M., Smetanska, I., 2018. Bioactive phytochemicals and antioxidant properties of the grains and sprouts of colored wheat genotypes. Molecules 23, 1-14.
https://doi.org/10.3390/molecu....
79.
Thakur, A., Sharma, R.P., Sankhyan, N.K., Kumar, R., 2021. Maize grain quality as influenced by 46 Years' continuous application of fertilizers, farmyard manure (FYM), and lime in an alfisol of North-western Himalayas. Commun. Soil Sci. Plant Anal. 52, 149-160.
https://doi.org/10.1080/001036....
80.
Tian, L., Bi, W., Liu, X., Sun, L., Li, J., 2019. Effects of waterlogging stress on the physiological response and grain-filling characteristics of spring maize (Zea mays L.) under field conditions. Acta Physiol. Plant 41, 1-14.
https://doi.org/10.1007/s11738....
81.
Uarrota, V.G., Severino, R.B., Malinowsky, C., de Oliveira, S.K., Kuhnen, S., Yunes, R.A., et al., 2014. Biochemical profile of leaf, silk and grain samples of eight maize landraces (Zea mays L.) cultivated in two low-input agricultural systems. J. Food Biochem. 38, 551-562.
https://doi.org/10.1111/jfbc.1....
82.
Vaitkeviciene, N., Kulaitiene, J., Jariene, E., Levickiene, D., Danillcenko, H., Srednicka-Tober, D., et al., 2020. Characterization of bioactive compounds in colored potato (Solanum tuberosum L.) cultivars grown with conventional, organic, and biodynamic methods. Sustainability (Switzerland) 12.
https://doi.org/10.3390/su1207....
83.
Vázquez-Carrillo, G., García-Lara, S., Salinas-Moreno, Y., Bergvinson, D.J., Palacios-Rojas, N., 2011. Grain and tortilla quality in landraces and improved maize grown in the highlands of Mexico. Plant Foods Human Nutrition 66, 203-208.
https://doi.org/10.1007/s11130....
84.
Wang, X., Liu, S., Yin, X., Bellaloui, N., Winings, J.H., Agyin-Birikorang, S., et al., 2020. Maize grain composition with additions of npk briquette and organically enhanced n fertilizer. Agronomy 10.
https://doi.org/10.3390/agrono....
85.
Wies, G., Navarrete-Segueda, A., Ceccon, E., Larsen, J., Martinez-Ramos, M., 2022. What drives management decisions and grain yield variability in Mesoamerican maize cropping systems? Evidence from small-scale farmers in southern Mexico. Agric. Sys. 198.
https://doi.org/10.1016/j.agsy....
86.
Yu, D., Huang, T., Tian, B., Zhan, J., 2020. Advances in biosynthesis and biological functions of proanthocyanidins in horticultural plants. Foods 9, 1-22.
https://doi.org/10.3390/foods9....
87.
Zepeda Villarreal, E.A., Camacho Villa, T.C., Barba Escoto, L., Ridaura, S.L., 2020. Maize productivity gaps: an explanation based on the heterogeneity of mexico central and south farm households. Tropical Subtropical Agroecosys. 23.
https://doi.org/10.56369/tsaes....