Drip loss control technology of frozen fruits and vegetables during thawing: a review
Min Zhang 1,3
More details
Hide details
State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, China
International Joint Laboratory on Food Safety, Jiangnan University, Jiangnan University, China
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Yangzhou Yechun Food Production & Distribution Co., Yangzhou 225200, Jiangsu, China
Final revision date: 2021-07-24
Acceptance date: 2021-09-15
Publication date: 2021-10-22
Corresponding author
Min Zhang   

School of Food Science and Technology, Jiangnan University, China
Int. Agrophys. 2021, 35(3): 235-250
  • Bullet point 1: A brief summary of the meaning of drip loss control technology of frozen fruits and vegetables.
  • Bullet point 2: Discussed three methods for achieving drip loss control of frozen fruits and vegetables.
  • Bullet point 3: Reviewed some development tendency of drip loss control technology of frozen fruits and vegetables.
Frozen fruit and vegetables are types of natural foods without any additives, they are becoming more and more popular because of the seasonal supply of fresh fruit and vegetables, rich nutrition content, convenient consumption, sanitary condition, and favourable preservation performance which only requires simple technology. They are also a type of processed primary agricultural product with a good market share. However, the quality maintenance of frozen fruit and vegetables is a major problem with their preservation. Moreover, a significant number of researchers have been exploring many advanced technologies to maintain their qualities during the preservation process. In this article, the research status of drip loss control technology during the thawing of frozen fruit and vegetables is summarized in three respects: surface pre-dehydration pretreatment, optimal freezing processes and thawing modes, and also its development trend is briefly explored.
We acknowledge all of which enabled us to carry out this study.
The research was supported by a grant from Key R & D projects of Xinjiang Uygur Autonomous Region of China (No. 2020B02017-1 (2021-2022)), the National Key R&D Programme of China (Contract No. 2017YFD0400501 (2017-2021)), the 111 Project (BP0719028 (2017-2022)), the Jiangsu Province (China) “Collaborative Innovation Centre for Food Safety and Quality Control” Industry Development Programme, and the National First-Class Discipline Programme of Food Science and Technology (No. JUFSTR20180205 (2018-2021))
The authors do not declare any conflict of interest.
Alvino Granados A.E., and Kawai K., 2021. Effect of cellulose powder content on the water sorption, glass transition, mechanical relaxation, and caking of freeze-dried carbohydrate blend and food powders. LWT-Food Sci. Technol., 148, 111798,
Amami E., Vorobiev E., and Kechaou N., 2005. Effect of pulsed electric field on the osmotic dehydration and mass transfer kinetics of apple tissue. Dry. Technol., 23, 581-595,
Awad T.S., Moharram H.A., Shaltout O.E., Asker D., and Youssef M.M., 2012. Applications of ultrasound in analysis, processing and quality control of food: a review. Food Res. Int., 48, 410-427,
Ayala-Aponte A. and Cadena-G M.I., 2014. The influence of osmotic pretreatments on melon (Cucumis melo L.) quality during frozen storage. Dyna, 81, 81-86,
Bedane T.F., Altin O., Erol B., Marra F., and Erdogdu F., 2018. Thawing of frozen food products in a staggered through-field electrode radio frequency system: A case study for frozen chicken breast meat with effects on drip loss and texture. Innov. Food Sci. Emerg. Technol., 50, 139-147,
Bialik M., Wiktor A., Witrowa-Rajchert D., Samborska K., and Findura P., 2020. Osmotic dehydration and freezing pretreatment for vacuum drying kiwiberry: drying kinetics and microstructural changes. Int. Agrophys., 34, 265-272,
Cai L., Cao M., Regenstein J., and Cao A., 2019. Recent advances in food thawing technologies. Compr. Rev. Food Sci. Food Saf., 18, 953-970,
Cai L., Zhang W., Cao A., and Cao M., 2020. Effects of different thawing methods on the quality of largemouth bass (Micropterus salmonides). LWT-Food Sci. Technol., 120, 108908,
Cano P., Marin M.A., and Fuster C., 1990. Freezing of banana slices. Influence of maturity level and thermal treatment prior to freezing. J. Food Sci., 55, 1070-1072,
Chandra S. and Kumari D., 2015. Recent development in osmotic dehydration of fruit and vegetables: a review. Crit. Rev. Food Sci. Nutr., 55, 552-561,
Chassagne-Berces S., Fonseca F., Citeau M., and Marin M., 2010. Freezing protocol effect on quality properties of fruit tissue according to the fruit, the variety and the stage of maturity. LWT-Food Sci. Technol., 43, 1441-1449,
Cheng L., Zhu Z., and Sun D.-W., 2021. Impacts of high pressure assisted freezing on the denaturation of polyphenol oxidase. Food Chem., 335, 127485,
Cheng X.-F., Zhang M., and Adhikari B., 2014. Effects of ultrasound-assisted thawing on the quality of edamames (Glycine max (L.) Merrill) frozen using different freezing methods. Food Sci. Biotech., 23, 1095-1102,
Cong C., Da-Zhang Y., and Jing X., 2019. Review on ice crystal shape and assisted freezing methods of quick-frozen food. Food and Machinery, 220-225.
Cruz-Tirado J.P., Martins J.P., Olmos B.D.F., Condotta R., and Kurozawa L.E., 2021. Impact of glass transition on chemical properties, caking and flowability of soymilk powder during storage. Powder Technol., 386, 20-29,
Cvetković B.R., Pezo L.L., Mišan A., Mastilović J., Kevrešan Ž., Ilić N., and Filipčev B., 2019. The effects of osmotic dehydration of white cabbage on polyphenols and mineral content. LWT-Food Sci. Technol., 110, 332-337,
Dash K.K., Balasubramaniam V.M., and Kamat S., 2019. High pressure assisted osmotic dehydrated ginger slices. J. Food Eng., 247, 19-29,
de Jesus Junqueira J.R., Gomes Correa J.L., de Mendonca K.S., Resende N.S., and de Barros Vilas Boas E.V., 2017. Influence of sodium replacement and vacuum pulse on the osmotic dehydration of eggplant slices. Innov. Food Sci. Emerg. Technol., 41, 10-18,
Dermesonlouoglou E.K., Giannakourou M.C., and Taoukis P., 2007. Stability of dehydrofrozen tomatoes pretreated with alternative osmotic solutes. J. Food Eng., 78, 272-280,
Dermesonlouogloua E., Zacharioua I., Andreoua V., and Taoukis P.S., 2018. Quality assessment and shelf-life modeling of pulsed electric field pretreated osmodehydrofrozen kiwifruit slices. Int. J. Food Stud., 7, 34-51,
Duan X., Zhang M., Li X., and Mujumdar A.S., 2008. Ultrasonically enhanced osmotic pretreatment of sea cucumber prior to microwave freeze drying. Dry. Technol., 26, 420-426,
Ekezie F.-G.C., Sun D.-W., Han Z., and Cheng J.-H., 2017. Microwave-assisted food processing technologies for enhancing product quality and process efficiency: a review of recent developments. Trends Food Sci. Technol., 67, 58-69,
Fan K., Zhang M., Wang W., and Bhandari B., 2020. A novel method of osmotic-dehydrofreezing with ultrasound enhancement to improve water status and physicochemical properties of kiwifruit. Int. J. Refrig., 113, 49-57,
Farag K.W., Duggan E., Morgan D.J., Cronin D.A., and Lyng J.G., 2009. A comparison of conventional and radio frequency defrosting of lean beef meats: Effects on water binding characteristics. Meat Sci., 83, 278-284,
Ferrari G., Maresca P., and Ciccarone R., 2011. The effects of high hydrostatic pressure on the polyphenols and anthocyanins in red fruit products. Proc. Food Sci., 1, 847-853,
Gonçalves E.M., Abreu M., Brandão T.R.S., and Silva C.L.M., 2011. Degradation kinetics of colour, vitamin C and drip loss in frozen broccoli (Brassica oleracea L. ssp. Italica) during storage at isothermal and non-isothermal conditions. Int. J. Refrig., 34, 2136-2144,
Han L., Xiaorui W., Yong Z., Hao X., Fei W., Chenghai L., Chai L., and Xianzhe Z., 2018. Research of microwave assisted osmotic dehydration process for blackcurrant whole fruit. Food Sci. Technol., 43, 104-112.
Holzwarth M., Korhummel S., Carle R., and Kammerer D.R., 2012. Evaluation of the effects of different freezing and thawing methods on color, polyphenol and ascorbic acid retention in strawberries (Fragaria×ananassa Duch.). Food Res. Int., 48, 241-248,
James C., Purnell G., and James S.J., 2014. A Critical Review of Dehydrofreezing of Fruits and Vegetables. Food Bioproc. Tech., 7, 1219-1234,
Jha P.K., Chevallier S., Xanthakis E., Jury V., and Le-Bail A., 2020. Effect of innovative microwave assisted freezing (MAF) on the quality attributes of apples and potatoes. Food Chem., 309,
Jia F., Jing Y., Dai R., Li X., and Xu B., 2020. High-pressure thawing of pork: Water holding capacity, protein denaturation and ultrastructure. Food Biosci., 38, 100688,
Jia G., Liu H., Nirasawa S., and Liu H., 2017. Effects of high-voltage electrostatic field treatment on the thawing rate and post-thawing quality of frozen rabbit meat. Innov. Food Sci. Emer. Technol., 41, 348-356,
Joardder M., Karim A., Kumar C., and Brown R.J., 2014. Effect of cell wall properties of plant tissue on porosity and shrinkage of dried apple. Int. J. Food Prop., 18, 2327-2337,
Kaale L.D., Eikevik T.M., Rustad T., and Nordtvedt T.S., 2014. Changes in water holding capacity and drip loss of Atlantic salmon (Salmo salar) muscle during superchilled storage. LWT-Food Sci. Technol., 55, 528-535,
Kang T., You Y., Hoptowit R., Wall M.M., and Jun S., 2021. Effect of an oscillating magnetic field on the inhibition of ice nucleation and its application for supercooling preservation of fresh-cut mango slices. J. Food Eng., 300, 110541,
Khan M.K., Ahmad K., Hassan S., Imran M., Ahmad N., and Xu C., 2018. Effect of novel technologies on polyphenols during food processing. Innov. Food Sci. Emerg. Technol., 45, 361-381,
Khin M.M., Zhou W., and Perera C., 2005. Development in the Combined Treatment of Coating and Osmotic Dehydration of Food - a review. Int. J. Food Eng., 1(1),
Kiani H. and Sun D.-W., 2011. Water crystallization and its importance to freezing of foods: a review. Trends Food Sci. Technol., 22, 407-426,
Koizumi M., Naito S., Haishi T., Utsuzawa S., Ishida N., and Kano H., 2006. Thawing of frozen vegetables observed by a small dedicated MRI for food research. Magn. Reson. Imaging, 24, 1111-1119,
Kong C.H.Z., Hamid N., Ma Q., Lu J., Wang B.-G., and Sarojini V., 2017. Antifreeze peptide pretreatment minimizes freeze-thaw damage to cherries: An in-depth investigation. LWT-Food Sci. Technol., 84, 441-448,
Kowalski S.J. and Szadzińska J., 2014. Convective-intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration. Chem. Engin. Process.-Process Intensification, 82, 65-70,
Kulczyński B., Suliburska J., Rybarczyk M., and Gramza-Michałowska A., 2021. The effect of osmotic dehydration conditions on the calcium content in plant matrice. Food Chem., 343, 128519,
LeBail A., Chevalier D., Mussa D.M., and Ghoul M., 2002. High pressure freezing and thawing of foods: a review. Int. J. Refrig., 25, 504-513,
Li B. and Sun D.-W., 2002. Novel methods for rapid freezing and thawing of foods – a review. J. Food Eng., 54, 175-182,
Li D., Zhu Z., and Sun D.-W., 2018. Effects of freezing on cell structure of fresh cellular food materials: a review. Trends Food Sci. Technol., 75, 46-55,
Li J., Chotiko A., Kyereh E., Zhang J., Liu C., Ortega V.V.R., Bankston D., and Sathivel S., 2017. Development of a combined osmotic dehydration and cryogenic freezing process for minimizing quality changes during freezing with application to fruits and vegetables. J. Food Process. Preserv., 41, 8,
Li J., Shi J., Huang X., Zou X., Li Z., Zhang D., Zhang W., and Xu Y., 2020. Effects of pulsed electric field on freeze-thaw quality of Atlantic salmon. Innov. Food Sci. Emerg. Technol., 65, 102454,
Liu C., Grimi N., Bals O., Lebovka N., and Vorobiev E., 2021. Effects of pulsed electric fields and preliminary vacuum drying on freezing assisted processes in potato tissue. Food Bioprod. Process., 125, 126-133,
Liu D.-K., Xu C.-C., Guo C.-X., and Zhang X.-X., 2020. Sub-zero temperature preservation of fruits and vegetables: a review. J. Food Eng., 275, 109881,
Liu Y., Chen S., Pu Y., Muhammad A.I., Hang M., Liu D., and Ye T., 2019. Ultrasound-assisted thawing of mango pulp: Effect on thawing rate, sensory, and nutritional properties. Food Chem., 286, 576-583,
Llave Y., Kambayashi D., Fukuoka M., and Sakai N., 2020. Power absorption analysis of two-component materials during microwave thawing and heating: Experimental and computer simulation. Innov. Food Sci. Emer. Technol., 66, 102479,
Luo W., Tappi S., Wang C., Yu Y., Zhu S., Dalla Rosa M., and Rocculi P., 2019. Effect of high hydrostatic pressure (HHP) on the antioxidant and volatile properties of candied wumei fruit (Prunus mume) during osmotic dehydration. Food Bioproc. Tech., 12, 98-109,
Mahato S., Zhu Z., and Sun D.-W., 2019. Glass transitions as affected by food compositions and by conventional and novel freezing technologies: a review. Trends Food Sci. Technol., 94, 1-11,
Maninder K. and Mahesh K., 2020. An innovation in magnetic field assisted freezing of perishable fruits and vegetables: a review. Food Rev. Int., 36, 761-780,
Marani C.M., Agnelli M.E., and Mascheroni R.H., 2007. Osmo-frozen fruits: mass transfer and quality evaluation. J. Food Eng., 79, 1122-1130,
Moreno J., Gonzales M., Zuniga P., Petzold G., Mella K., and Munoz O., 2016. Ohmic heating and pulsed vacuum effect on dehydration processes and polyphenol component retention of osmodehydrated blueberries (cv. Tifblue). Innov. Food Sci. Emerg. Technol., 36, 112-119,
Niu D., Zeng X.-A., Ren E.-F., Xu F.-Y., Li J., Wang M.-S., and Wang R., 2020. Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Res. Int., 137, 109715,
Noel T.R., Ring S.G., and Whittam M.A., 1990. Glass transitions in low-moisture foods. Trends Food Sci. Technol., 1, 62-67,
Nunez-Mancilla Y., Perez-Won M., Vega-Galvez A., Arias V., Tabilo-Munizaga G., Briones-Labarca V., Lemus-Mondaca R., and Di Scala K., 2011. Modeling mass transfer during osmotic dehydration of strawberries under high hydrostatic pressure conditions. Innov. Food Sci. Emer. Technol., 12, 338-343,
Otero L., Martino M., Zaritzky N., Solas M., and Sanz P.D., 2000. Preservation of microstructure in peach and mango during high-pressure-shift freezing. J. Food Sci., 65, 466-470,
Panahirad S., Dadpour M., Peighambardoust S.H., Soltanzadeh M., Gullón B., Alirezalu K., and Lorenzo J.M., 2021. Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: a review. Trends Food Sci. Technol., 110, 663-673,
Prothon F., Ahrne L.M., Funebo T., Kidman S., Langton M., and Sjoholm I., 2001. Effects of combined osmotic and microwave dehydration of apple on texture, microstructure and rehydration characteristics. LWT-Food Sci. Technol., 34, 95-101,
Provesi J.G., Valentim Neto P.A., Arisi A.C.M., and Amante E.R., 2019. Extraction of antifreeze proteins from cold acclimated leaves of Drimys angustifolia and their application to star fruit (Averrhoa carambola) freezing. Food Chem., 289, 65-73,
Pupan N., Dhamvithee P., Jangchud A., and Boonbumrung S., 2018. Influences of different freezing and thawing methods on the physico-chemical, flavor, and sensory properties of durian puree (cv. Monthong). J. Food Proces. Preserv., 42: e13669,
Qiu L., Zhang M., Chitrakar B., and Bhandari B., 2020. Application of power ultrasound in freezing and thawing processes: Effect on process efficiency and product quality. Ultrason. Sonochem., 68, 105230,
Qiu L., Zhang M., Tang J., Adhikari B., and Cao P., 2019. Innovative technologies for producing and preserving intermediate moisture foods: a review. Food Res. Int., 116, 90-102,
Ramallo L.A. and Mascheroni R.H., 2010. Dehydrofreezing of pineapple. J. Food Eng., 99, 269-275,
Rastogi N.K., Angersbach A., and Knorr D., 2000. Synergistic effect of high hydrostatic pressure pretreatment and osmotic stress on mass transfer during osmotic dehydration. J. Food Eng., 45, 25-31,
Rastogi N.K., Raghavarao K.S.M.S., Balasubramaniam V.M., Niranjan K., and Knorr D., 2007. Opportunities and challenges in high pressure processing of foods. Crit. Rev. Food Sci. Nutr., 47, 69-112,
Rayman Ergün A., Yanat M., and Baysal T., 2021. The effects of the novel home freezing system on microstructure, color, antioxidant activity, and microbiological properties of strawberries. Int. J. Refrig., 121, 228-234,
Redmond G.A., Butler F., and Gormley T.R., 2002. The effect of freezing conditions on the quality of freeze-chilled reconstituted mashed potato. LWT-Food Sci. Technol., 35, 201-204,
Redmond G.A., Gormley T.R., and Butler F., 2004. The effect of short- and long-term freeze-chilling on the quality of cooked green beans and carrots. Innov. Food Sci. Emerg.Technol., 5, 65-72,
Rizzolo A., Vanoli M., Cortellino G., Spinelli L., Contini D., Herremans E., Bongaers E., Nemeth A., Leitner M., Verboven P., Nicolaï B.M., and Torricelli A., 2014. Characterizing the tissue of apple air-dried and osmo-air-dried rings by X-CT and OCT and relationship with ring crispness and fruit maturity at harvest measured by TRS. Innov. Food Sci. Emerg. Technol., 24, 121-130,
Roknul A.S.M., Zhang M., Mujumdar A.S., and Wang Y., 2014. A comparative study of four drying methods on drying time and quality characteristics of stem lettuce slices (Lactuca sativa L.). Dry. Technol., 32, 657-666,
Sadot M., Curet S., Rouaud O., Le-Bail A., and Havet M., 2017. Numerical modelling of an innovative microwave assisted freezing process. Int. J. Refrig., 80, 66-76,
Sahin U. and Ozturk H.K., 2016. Effects of pulsed vacuum osmotic dehydration (PVOD) on drying kinetics of figs (Ficus carica L). Innov. Food Sci. Emerg. Technol. 36, 104-111,
Schudel S., Prawiranto K., and Defraeye T., 2021. Comparison of freezing and convective dehydrofreezing of vegetables for reducing cell damage. J. Food Eng., 293, 110376,
Sharif I., Adewale P., Dalli S.S., and Rakshit S., 2018. Microwave pretreatment and optimization of osmotic dehydration of wild blueberries using response surface methodology. Food Chem., 269, 300-310,
Song D.H., Kim M., Jin E.-S., Sim D.-W., Won H.-S., Kim E.K., Jang S., Choi Y.S., Chung K.-H., and An J.H., 2019. Cryoprotective effect of an antifreeze protein purified from Tenebrio molitor larvae on vegetables. Food Hydrocoll., 94, 585-591,
Suutarinen J., Heiska K., Moss P., and Autio K., 2000. The Effects of Calcium Chloride and Sucrose Prefreezing Treatments on the Structure of Strawberry Tissues. LWT-Food Sci. Technol., 33, 89-102,
Tahir H.E., Xiaobo Z., Mahunu G.K., Arslan M., Abdalhai M., and Zhihua L., 2019. Recent developments in gum edible coating applications for fruits and vegetables preservation: a review. Carbohydr. Polym., 224, 115141,
Tang J., Shao S., Tian C., and 2020a. Effects of the magnetic field on the freezing process of blueberry. Int. J. Refrig., 113, 288-295,
Tang J., Zhang H., Tian C., and Shao S., 2020b. Effects of different magnetic fields on the freezing parameters of cherry. J. Food Eng., 278, 109949,
Tian Y., Chen Z., Zhu Z., and Sun D.-W., 2020. Effects of tissue pre-degassing followed by ultrasound-assisted freezing on freezing efficiency and quality attributes of radishes. Ultrason. Sonochem., 67, 105162,
Tu J., Zhang M., Xu B., and Liu H., 2015. Effect of physicochemical properties on freezing suitability of Lotus (Nelumbo nucifera) root. Int. J. Refrig., 50, 1-9,
Turner G., Green R., Alae-Carew C., and Dangour A.D., 2021. The association of dimensions of fruit and vegetable access in the retail food environment with consumption; a systematic review. Glob. Food Sec., 29, 100528,
Van Buggenhout S., Messagie I., Maes V., Duvetter T., Van Loey A., and Hendrickx M., 2006. Minimizing texture loss of frozen strawberries: effect of infusion with pectinmethylesterase and calcium combined with different freezing conditions and effect of subsequent storage/thawing conditions. Eur. Food Res. Technol., 223, 395-404,
Wang H., Liu C., Xue Y., and Li D., 2020. Correlation of mechanical properties of peach slices with cell wall polysaccharides and cell morphology during hot air predrying. J. Food Process. Preserv., 44: e14319,
Wang Q., Wang L., Tian Y., Zhu Z., and Sun D.-W., 2021a. Effects of ultrahigh permittivity ceramic on water freezing by high voltage electric field-assisted freezing system. Int. J. Refrig.,128, 271-280,
Wang Y.-Y., Yan J.-K., Rashid M.T., Ding Y., Chikari F., Huang S., and Ma H., 2021b. Dual-frequency sequential ultrasound thawing for improving the quality of quick-frozen small yellow croaker and its possible mechanisms. Innov. Food Sci. Emerg. Technol., 68, 102614,
Wiktor A., Schulz M., Voigt E., Witrowa-Rajchert D., and Knorr D., 2015. The effect of pulsed electric field treatment on immersion freezing, thawing and selected properties of apple tissue. J. Food Eng., 146, 8-16,
Wu X.-F., Zhang M., Adhikari B., and Sun J., 2017. Recent developments in novel freezing and thawing technologies applied to foods. Crit. Rev. Food Sci. Nutr., 57, 3620-3631,
Xin Y., Zhang M., and Adhikari B., 2014a. The effects of ultrasound-assisted freezing on the freezing time and quality of broccoli (Brassica oleracea L. var. botrytis L.) during immersion freezing. Int. J. Refrig., 41, 82-91,
Xin Y., Zhang M., and Adhikari B., 2014b. Freezing Characteristics and Storage Stability of Broccoli (Brassica oleracea L. var. botrytis L.) under Osmodehydrofreezing and Ultrasound-assisted Osmodehydrofreezing Treatments. Food Bioproc. Technol., 7, 1736-1744,
Xu B.-G., Zhang M., Bhandari B., Cheng X.-F., and Islam M.N., 2015. Effect of ultrasound-assisted freezing on the physico-chemical properties and volatile compounds of red radish. Ultrason. Sonochem., 27, 316-324,
Xu B., Chen J., Yuan J., Azam S.M.R., and Zhang M., 2021. Effect of different thawing methods on the efficiency and quality attributes of frozen red radish. J. Sci. Food Agric., 101, 3237-3245,
Xu B., Zhang M., Bhandari B., and Cheng X., 2014a. Influence of ultrasound-assisted osmotic dehydration and freezing on the water state, cell structure, and quality of radish (Raphanus sativus L.) cylinders. Dry. Technol., 32, 1803-1811,
Xu C.-C., Liu D.-K., Zhang L., Chen X.-J., Sui Y.-C., Zhang H.-Z., and Ma H., 2020. Influence of temperature fluctuations on the state/phase, ice crystal morphology, cell structure, and quality of celery during frozen storage. LWT-Food Sci. Technol., 125, 109219,
Xu Z., Guo Y., Ding S., An K., and Wang Z., 2014b. Freezing by immersion in liquid CO2 at variable pressure: Response surface analysis of the application to carrot slices freezing. Innov. Food Sci. Emerg. Technol., 22, 167-174,
Yousuf B., Qadri O.S., and Srivastava A.K., 2018. Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: a review. LWT-Food Sci. Technol., 89, 198-209,
Yu Y., Jin T.Z., Fan X., and Xu Y., 2017. Osmotic dehydration of blueberries pretreated with pulsed electric fields: Effects on dehydration kinetics, and microbiological and nutritional qualities. Dry. Technol., 35, 1543-1551,
Yuan J., Li H., Tao W., Han Q., Dong H., Zhang J., Jing Y., Wang Y., Xiong Q., and Xu T., 2020. An effective method for extracting anthocyanins from blueberry based on freeze-ultrasonic thawing technology. Ultrason. Sonochem., 68, 105192,
Zdunek A., Gancarz M., Cybulska J., Ranachowski Z., and Zgorska K.J.I.A., 2008. Turgor and temperature effect on fracture properties of potato tuber (Solanum tuberosum cv. Irga). Int. Agrophys., 22, 89-97.
Zhang L., Liao L., Qiao Y., Wang C., Shi D., An K., and Hu J., 2020a. Effects of ultrahigh pressure and ultrasound pretreatments on properties of strawberry chips prepared by vacuum-freeze drying. Food Chem., 303,
Zhang L., Qiao Y., Wang C., Liao L., Shi D., An K., Hu J., Wang J., and Shi L., 2020b. Influence of high hydrostatic pressure pretreatment on properties of vacuum-freeze dried strawberry slices. Food Chem., 331,
Zhang M., Tang J., Mujumdar A.S., and Wang S., 2006. Trends in microwave-related drying of fruits and vegetables. Trends Food Sci. Technol., 17, 524-534,
Zhang W., Shen Y., Li Z., Xie X., Gong E.S., Tian J., Si X., Wang Y., Gao N., Shu C., Meng X., Li B., and Liu R.H., 2021. Effects of high hydrostatic pressure and thermal processing on anthocyanin content, polyphenol oxidase and β-glucosidase activities, color, and antioxidant activities of blueberry (Vaccinium Spp.) puree. Food Chem., 342, 128564,
Zhang Y., Zhao J.-H., Ding Y., Nie Y., Xiao H.-W., Zhu Z., and Tang X.-M., 2017. Effects of state/phase transitions on the quality attributes of mango (Mangifera indica L.) during frozen storage. Int. J. Food Sci. Technol., 52, 239-246,
Zhao J.H., Liu F., Pang X.L., Xiao H.W., Wen X., and Ni Y.Y., 2016. Effects of different osmo-dehydrofreezing treatments on the volatile compounds, phenolic compounds and physicochemical properties in mango (Mangifera indica L.). Int. J. Food Sci. Technol., 51, 1441-1448,
Zhu S., Ramaswamy H.S., and Simpson B.K., 2004. Effect of high-pressure versus conventional thawing on color, drip loss and texture of Atlantic salmon frozen by different methods. LWT-Food Sci. Technol., 37, 291-299,
Zhu Z., Zhang P., and Sun D.-W., 2020. Effects of multi-frequency ultrasound on freezing rates and quality attributes of potatoes. Ultrason. Sonochem., 60, 104733,
Journals System - logo
Scroll to top