Effect of different chemical properties of cereal grains on the foraging and microbiome of the rice weevil (Sitophilus oryzae L.)
More details
Hide details
Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Poland
Final revision date: 2024-02-14
Acceptance date: 2024-02-22
Publication date: 2024-03-26
Corresponding author
Olga Kosewska   

Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720, Olsztyn, Poland
Int. Agrophys. 2024, 38(2): 165-176
  • Species and cultivars of grain significant affected on structure of insect microbiome
  • Fatty acid profile plays a crucial role in varietal resistance and influences microbiome
  • Parental generation of rice weevil has more significant microbiome variability
  • In digestive tract of rice weevil, dominant bacterial genus is Sodalis sp.
Due to global warming, the rice weevil is an increasing threat. Various species of weevils coexist with endosymbiotic Sodalis pierantonius. This study aimed to check whether different chemical properties of different cultivars of common wheat and barley grain cause disturbances in insect feeding and rearrangements of the rice weevil microbiome. It has been observed that foraging increases in the case of cultivars with low protein content, high steric acid content, and low antioxidant activity. Cultivars with higher antioxidant activity, a tendency was observed to increase the number of adult insects and the intensity of feeding. However, the correlation of number of offspring generations and antioxidants was different depending on species of cereals (R2=0.9 for barley, R2<0.1 for wheat). Changes of dominance classes of selected Enterobacteriaceae partially shifted the microbiomes of insects feeding on different barley varieties. In contrast, in some wheat cultivars, displacement of the dominant genus Sodalis by genera Staphylococcus or Mammaliicoccus was observed, severely reducing the rice weevil's foraging ability. Nevertheless, Sodalis sp. almost always dominated (from 16.7 to 90.07% for wheat and from 63.4 to 90.9% for barley), and no correlation was observed between species and variety factors of cereals and their abundance.
We would like to express our heartfelt thanks to Katarzyna Smołka from Fluentbe for her invaluable assistance in proofreading and linguistic correction of this manuscript.
This work was supported by a research project of the University of Warmia and Mazury in Olsztyn (no. 30.610.010-110 and 30.610.011-110). The study was supported by the Polish National Science Centre under the project no. UMO-2021/41/N/NZ9/00364 (2022-2024). The results presented in this paper were obtained from a comprehensive study financed by the University of Warmia and Mazury in Olsztyn, Faculty of Agriculture and Forestry, Department of Entomology, Phytopathology and Molecular Diagnostics.
The Authors declare they have no conflict of interest.
Abass A.B., Ndunguru G., Mamiro P., Alenkhe B., Mlingi N., and Bekunda M., 2014. Post-harvest food losses in a maise-based farming system of semi-arid savannah area of Tanzania. J. Stored Prod. Res., 57, 49-57,
Ahmed A.G., Ali M.H.M., Saad O.S., Mahmoud Z.N., Nasr D.H., Elamin S.M., Altaf-Ul-Amin M.d., Afendi F.M., Kanaya S., Idris I., et al., 2020. Recent Research Advances in Biology Vol. 2. (Ed. S. Borek). Book Publisher International,
Benzie I.F.F. and Strain J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem., 239(1), 70-76,
Bergvinson D.J., 2014. Phytochemical and nutraceutical changes during recurrent selection for storage pest resistance in tropical maise. Crop Sci., 54(6), 2423-2432,
Boniecki P., Koszela K., Świerczyński K., Skwarcz J., Zaborowicz M., and Przybył J., 2020. Neural visual detection of grain weevil (Sitophilus granarius L.). Agriculture, 10(1), 25,
Brandon A.M., Gao S.H., Tian R., Ning D., Yang S.S., Zhou J., Wu W.M., and Criddle CS., 2018. Biodegradation of polyethylene and plastic mixtures in mealworms (Larvae of Tenebrio molitor) and effects on the gut microbiome. Environ. Sci. Technol., 52(11), 6526-6533,
Caron P., Ferrero y de Loma-Osorio G., Nabarro D., Hainzelin E., Guillou M., Andersen I., Arnold T., Astralaga M., Beukeboom M., Bickersteth S., et al., 2018. Food systems for sustainable development: proposals for a profound four-part transformation. Agron. Sustain. Dev., 38(4),
Chippendale G.M., 1972. Dietary carbohydrates: Role in survival of the adult rice weevil, Sitophilus oryzae. J. Insect Physiol., 18(5), 949-957,
COBORU. Research Centre for Cultivar Testing. Cultivars data. Online:, 25.10.2023.
Dal Bello G., Padin S., López Lastra C., and Fabrizio M., 2000. Laboratory evaluation of chemical-biological control of the rice weevil (Sitophilus oryzae L.) in stored grains. J. Stored Prodm. Res., 37(1), 77-84,
Dubey N.K., Srivastava B., and Kumar A., 2008. Current status of plant products as botanical pesticides in storage pest management. J. Biopest., 1(2), 182-186.
Dziamba J., Dziki D., and Laskowski J., 2001. The influence of nitrogen fertilisation on selected properties of wheat grain. Eng. Agri., 10(30), 121-127.
Dziki D., Różyło R., and Laskowski J., 2011. Wheat grinding and the effect of grain hardness on this process. Acta Agrophys., 18(1), 33-43.
Golebiowska Z., 1969. The feeding and fecundity of Sitophilus granarius (L.), Sitophilus orvzae (L.) and Rhyzopertha dominica (F.) in wheat grain. J. Stored Prod. Res., 5(2), 143-155,
Greffeuille V., Abecassis J., Rousset M., Oury F.X., Faye A., L'Helgouac'h C.B., and Lullien-Pellerin V., 2006. Grain characterisation and milling behaviour of near-isogenic lines differing by hardness. Theor. Appl. Genet., 114(1), 1-12,
Gupta A. and Nair S., 2020. Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front. Microbiol., 11,
Halstead D.G.H., 1963. External sex differences in stored-products Coleoptera. Bull. Entomol. Res., 54(1), 119-134,
Heddi A. and Ardon P.N., 2005. Sitophilus oryzae L.: A model for intracellular symbiosis in the Dryophthoridae weevils (Coleoptera). Symbiosis, 39, 1-11.
Heddi A., Charles H., Khatchadourian C., Bonnot G., and Nardon P., 1998. Molecular characterisation of the principal symbiotic bacteria of the weevil Sitophilus oryzae: A peculiar G+C content of an endocytobiotic DNA. J. Mol. Evol., 47, 52-61,
Javid Iqbal M., Shams N., and Fatima K., 2022. Nutritional quality of wheat. Wheat. IntechOpen,
Jung C.M., Carr M., Fleischman E., and Roesch C.J., 2021. Response of the green June beetle and its gut microbiome to RDX and phenanthrene. Int. J. Environ. Sci. Technol., 18, 1785-1792,
Kavallieratos N.G., Athanassiou C.G., Arthur F.H., and Throne J.E., 2012. Lesser grain borers, Rhyzopertha dominica, select rough rice kernels with cracked hulls for reproduction. J. Insect Sci., 12(1), 38,
Keneni G., Bekele E., Getu E., Imtiaz M., Damte T., Mulatu B., and Dagne K., 2011. Breeding food legumes for resistance to storage insect pests: Potential and limitations. Sustainability, 3(9), 1399-1415,
Klejdysz T. and Mrówczyński M., 2017. Methodology of integrated protection of grain warehouses for advisors: collective study. IOR - National Research Institute.
Kordan B., Nietupski M., Ludwiczak E., Gabryś B., and Cabaj R., 2023. Selected cultivar-specific parameters of wheat grain as factors influencing intensity of development of grain weevil Sitophilus granarius (L.). Agriculture, 13(8), 1492,
Kordan B., Skrajda-Brdak M., Tańska M., Konopka I., Cabaj R., and Załuski D., 2019. Phenolic and lipophilic compounds of wheat grain as factors affecting susceptibility to infestation by granary weevil (Sitophilus granarius L.). J. Appl.Bot. Food Qual., 92, 64-72,
Kosewska O., Przemieniecki S.W., and Nietupski M., 2023. The effect of antibiotics on bacteriome of sitophilus oryzae and rhyzopertha dominica as a factor determining the success of foraging: A chance for antibiotic therapy in grain stores. App. Sci., 13(3), 1576,
Kumar D. and Kalita P., 2017. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods, 6(1), 1-22,
Laszczak-Dawid A., Ciepielewska D., and Damszel M., 2011. Technological quality of grain of some wheat cultivars versus the development of the lesser grain borer (Rhizopertha dominica F.). Prog. Plant Prot., 51(3), 1125-1129.
Li M., Geng L., Xie S., Wu D., Ye L., and Zhang G., 2021. Genome-wide association study on total starch, amylose and amylopectin in barley grain reveals novel putative alleles. Int. J. Mol. Sci., 22(2), 553,
Liu K.S., 2011. Comparison of lipid content and fatty acid composition and their distribution within seeds of 5 small grain species. J. Food Sci., 76(2), C334-C342,
Longstaff B.C. and Evans D.E., 1983. The demography of the rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), submodels of age-specific survivorship and fecundity. Bull. Entomol. Res., 73(2), 333-334,
Lumivero., 2023. XLSTAT basic solutions. Available online:, 20.06.2023.
Majd-Marani S., Naseri B., Hassanpour M., Razmjou J., and Jalaeian M., 2023. Life history and population growth parameters of the rice weevil, Sitophilus oryzae L. (Coleoptera: Curculionidae) fed on 10 rice cultivars and lines. Research Square,
Majumder S., Bala B.K., Arshad F.M., Haque M.A., and Hossain M.A., 2016. Food security through increasing technical efficiency and reducing postharvest losses of rice production systems in Bangladesh. Food Secur., 8(2), 361-374,
Mebarkia A., Rahbé Y., Guechi A., Bouras A., and Makhlouf M., 2010. Susceptibility of twelve soft wheat varieties (Triticum aestivum) to Sitophilus granarius (L.) (Coleoptera: Curculionidae). Agric. Biol. J. N. Am., 1(4), 571-578.
Mikulíková D., 2007. The effect of friabilin on wheat grain hardness. Czech J. Genet. Plant Breed., 43(2), 35-43,
Nawrot J., Warchalewski J.R., Piasecka-Kwiatkowska D., Niewiada A., Gawlak M., Grundas S.T., and Fornal J., 2006. The effect of some biochemical and technological properties of wheat grain on granary weevil (Sitophilus granarius L.) (Coleoptera: Curculionidae) development. In: Proceedings of the 9th International Working Conference on Stored Product Protection. São Paulo, Brazil, 400-407.
Nietupski M., Ciepielewska D., and Fornal L., 2006. Effect of the chemical protein diversity of selected wheat grain cultivars on the development of storage pests. Prog. Plant Prot., 46(2), 420-423.
Nietupski M., Ludwiczak E., Cabaj R., Purwin C., and Kordan B., 2021. Fatty acids present in wheat kernels influence the development of the grain weevil (Sitophilus granarius L.). Insects, 12(9),
Padín S., Dal Bello G., and Fabrizio M., 2002. Grain loss caused by Tribolium castaneum, Sitophilus oryzae and Acanthoscelides obtectus in stored durum wheat and beans treated with Beauveria bassiana. J. Stored Prod. Res., 38(1), 69-74,
Perisic V., Perisic V., Vukajlović F.N., and Pesic S.B., 2018. Feeding preferences and progeny production of Rhyzopertha dominica (Fabricius 1792) (Coleoptera: Bostrichidae) in small grains. Biol. Nyssana, 9(1),
Przemieniecki S.W., Damszel M., Ciesielski S., Kubiak K., Mastalerz J., Sierota Z., and Gorczyca A., 2021. Bacterial microbiome in Armillaria ostoyae rhizomorphs inhabiting the root zone during progressively dying Scots pine. Agric., Ecosyst., 164,
Przemieniecki S.W., Kosewska A., Ciesielski S., and Kosewska O., 2020. Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Env. Poll., 256, 113265,
Przemieniecki S.W., Kosewska A., Kosewska O., Purwin C., Lipiński K., and Ciesielski S., 2022. Polyethylene, polystyrene and lignocellulose wastes as mealworm (Tenebrio molitor L.) diets and their impact on the breeding condition, biometric parameters, metabolism, and digestive microbiome. Stoten, 832, 154758,
Rita Devi S., Thomas A., Rebijith K.B., and Ramamurthy V.V., 2017. Biology, morphology and molecular characterisation of Sitophilus oryzae and S. zeamais (Coleoptera: Curculionidae). J. Stored Prod. Res., 73, 135-141,
Serrato-Salas J. and Gendrin M., 2023. Involvement of microbiota in insect physiology: Focus on B vitamins. mBio., 14(1), e02225-22,
Shazely B.E., Urbański A., Johnston P.R., and Rolff J., 2019. In vivo exposure of insect AMP resistant Staphylococcus aureus to an insect immune system. Insect Biochem. Mol. Biol., 110, 60-68,
Sidorova D.E., Plyuta V.A., Padiy D.A., Kupriyanova E.V., Roshina N.V., Koksharova O.A., and Khmel I.A., 2022. The effect of volatile organic compounds on different organisms: Agrobacteria, plants and insects. Microorganisms, 10(1), 69,
Smith P. and Gregory P.J., 2013. Climate change and sustainable food production. Proc. Nutr. Soc., 72(1), 21-28,
Thomas T.A., 1977. An automated procedure for the determination of soluble carbohydrates in herbage. J. Sci. Food Agric., 28(7), 639-642,
Wang Y. and Rozen D.E., 2018. Gut microbiota in the burying beetle, Nicrophorus vespilloides, provide colonisation resistance against larval bacterial pathogens. Ecol. Evol., 8(3), 1646-1654,
Żegarska Z., Jaworski J., and Borejszo Z., 1991. Evaluation of the modified Peisker method for obtaining fatty acid methyl esters. Acta Acad. Agricult. Techn. Olst., 24, 25-33.
Zhou S. and Jander G., 2022. Molecular ecology of plant volatiles in interactions with insect herbivores. J. Exp. Bot., 73(2), 449-462,
Journals System - logo
Scroll to top