RESEARCH PAPER
Enhancing canola (Brassica napus L.) resilience to salt stress through foliar application of ascorbic acid
More details
Hide details
1
Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
2
Cholistan Institute of Desert Studies (CIDS), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
3
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
4
Department of Botany, University of Agriculture, Faisalabad, 38000, Pakistan
5
Department of Botany, Government College University, Faisalabad, 38000, Pakistan
6
Department of Botany, The Government Sadiq College Women University, Bahawalpur, 63100, Pakistan
7
Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
Final revision date: 2025-09-08
Acceptance date: 2025-11-12
Publication date: 2026-01-14
Int. Agrophys. 2026, 40(2): 115-132
Data Availability Statement: All data generated or analyzed during this study are included in this published article.
HIGHLIGHTS
- Ascorbic acid boosted the photosynthesis under salt stress by enhancing pigments
- Increase in ROS and Na⁺ buildup reduced by AsA foliar application
- The activity of enzymatic antioxidants increased with AsA treatment
KEYWORDS
TOPICS
ABSTRACT
Canola (Brassica napus L.), essential for food and biodiesel, suffers from productivity losses due to soil sali-nity. This study evaluated the effect of ascorbic acid (AsA) foliar spray on mitigating sodium chloride (NaCl)-induced salt stress in two canola varieties, Sandal (V1) and Rachna (V2). Plants were grown under control (0 mM NaCl) and salt stress (150 mM NaCl) conditions, with AsA treatments at 0, 15, and 30 mM concentrations. Salt stress can reduce canola’s morphological traits and photosynthetic activity. However, AsA treatment increased total chlorophyll, chlorophyll a, chlorophyll b (each by 55%), and carotenoids (62.8%). Salt stress elevated reactive oxygen species (ROS) and Na+ accumulation, but AsA application under stress enhanced glycine betaine (24%), proline (23.8%), anthocyanin (26%), total soluble sugars (24.6%), proteins (19.8%), endogenous AsA (26%), flavonoids (19.8%), total phenolics (29%), and antioxidant enzymes (SOD by 24%, POD by 19.7%, and CAT by 20%). The AsA treatments helped to control oxidative stress, regulate ion balance, and reduce lipid peroxidation, thereby preventing ROS overproduction. Out of two varieties, Rachna (V2) performed better than Sandal (V1) across all morphological and physiological parameters, demonstrating superior resilience under salinity.
ACKNOWLEDGEMENTS
The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University, KSA, for funding this work through Large Research Project under grant number RGP2/134/46
FUNDING
This research was funded by the Deanship of Research and Graduate Studies at King Khalid University, KSA, through Large Research Project under grant number RGP2/134/46.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
REFERENCES (103)
1.
Ahmad, P., Latef, A.A., Hashem, A., Abd-Allah, E.F., Gucel, S., Tran, L.S.P., 2016. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front. Plant Sci. 7, 347.
2.
Ahmed, S., Ahmed, S., Roy, S.K., Woo, S.H., Sonawane, K.D., Shohael, A.M., 2019. Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agric. 4(1), 361-373.
3.
Akhter, N., Aqeel, M., Maqsood, M.F., Nawaz, S., Shahnaz, M.M., Khalid, N., et al., 2022. Comparative assessment of remediation potential of Xanthium strumarium ecotypes in NaCl-affected root zone. Water Air Soil Pollut. 233(12), 509.
4.
Alinia, M., Kazemeini, S.A., Dadkhodaie, A., Sepehri, M., Mahjenabadi, V.A.J., Amjad, S.F., et al., 2022. Co-application of ACC deaminase-producing rhizobial bacteria and melatonin improves salt tolerance in common bean (Phaseolus vulgaris L.) through ion homeostasis. Sci. Rep. 12(1), 22105.
5.
Alizadeh, S., Gharagoz, S.F., Pourakbar, L., Moghaddam, S.S., Jamalomidi, M., 2021. Arbuscular mycorrhizal fungi alleviate salinity stress and alter phenolic compounds of Moldavian balm. Rhizosphere 19, 100417.
6.
Álvarez-Robles, M.J., Clemente, R., Ferrer, M.A., Calderón, A., Bernal, M.P., 2022. Effects of ascorbic acid addition on the oxidative stress response of Oryza sativa L. plants to As (V) exposure. Plant Physiol. Biochem. 186, 232-241.
7.
Alves, R.D.C., Rossatto, D.R., da Silva, J.D.S., Checchio, M.V., de Oliveira, K.R., Oliveira, F.D.A., et al., 2021. Seed priming with ascorbic acid enhances salt tolerance in micro-tom tomato plants by modifying the antioxidant defense system components. Biocatal Agric. Biotechnol. 31,101927.
8.
Amorim, T.L., Santos, H.R.B., Neto, J.B., Hermínio, P.J., Silva, J.R.I., Silva, M.M.A., et al., 2023. Resistant rootstocks mitigate ionic toxicity with beneficial effects for growth and photosynthesis in grapevine grafted plants under salinity. Sci. Hortic. 317, 112053.
9.
Arabia A., Munné-Bosch S., Muñoz P., 2024. Ascorbic acid as a master redox regulator of fruit ripening. Postharvest Biol. Technol. 207, 112614.
https://doi.org/10.1016/j.post....
10.
Arnon, D.I., 1949. Copper enzyme in isolated chloroplast. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24, 1-15.
11.
Attia, M.S., Osman, M.S., Mohamed, A.S., Mahgoub, H.A., Garada, M.O., Abdelmouty, E.S., et al., 2021. Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants 10(2), 388.
12.
Aydoğan, Ç., Girici, Z., Turhan, E.C.E., 2023. Exogenous application of ascorbic acid to induce tolerance against salt stress in common bean plants. Rom. Agric. Res. 40, 1-14.
13.
Azeem, M., Sultana, R., Mahmood, A., Qasim M., Siddiqui Z.S., Mumtaz S., et al., 2023. Ascorbic and salicylic acids vitalized growth, biochemical responses, antioxidant enzymes, photosynthetic efficiency, and ionic regulation to alleviate salinity stress in Sorghum bicolor. J. Plant Growth Regul. 42, 5266-5279.
https://doi.org/10.1007/s00344....
14.
Bano, A., Gupta, A., Rai, S., Fatima, T., Sharma, S., Pathak, N., 2021. Mechanistic role of reactive oxygen species and its regulation via the antioxidant system under environmental stress. Plant Stress Physiol.-Perspectives in Agric., 1-18.
15.
Barzegar, T., Fateh, M., Razavi, F., 2018. Enhancement of postharvest sensory quality and antioxidant capacity of sweet pepper fruits by foliar applying calcium lactate and ascorbic acid. Sci. Hortic. 241, 293-303.
17.
Billah, M., Rohman, M.M., Hossain, N., Uddin, M.S., 2017. Exogenous ascorbic acid improved tolerance in maize (Zea mays L.) by increasing antioxidant activity under salinity stress. Afr. J. Agric. Res. 12(17), 1437-1446.
18.
Borisova, M.M.M., Kozuleva, M.A., Rudenko, N.N., Naydov, I.A., Klenina, I.B., Ivanov, B.N., 2012. Photosynthetic electron flow to oxygen and diffusion of hydrogen peroxide through the chloroplast envelope via aquaporins. Biochim. Biophys. Acta (BBA)-Bioenerg. 1817(8), 1314-1321.
19.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1-2): 248-254.
https://doi.org/10.1016/0003-2....
20.
Celi, G.E.A., Gratão, P.L., Lanza, M.G.D.B., Dos Reis, A.R., 2023. Physiological and biochemical roles of ascorbic acid on mitigation of abiotic stresses in plants. Plant Physiol. Biochem. 107970.
21.
Chance, B., Maehly, A.C., 1955. Assay of catalase and peroxidase. Method Enzymol. 2, 764-775.
22.
Chaudhary, M.T., Majeed, S., Rana, I.A., Ali, Z., Jia, Y., Du, X., et al., 2024. Impact of salinity stress on cotton and opportunities for improvement through conventional and biotechnological approaches. BMC Plant Biol. 24(1), 20.
23.
Chen, Z., Cao, X-l, Niu, J-p., 2021. Effects of exogenous ascorbic acid on seed germination and seedling salt-tolerance of alfalfa. PLoS ONE 16(4): e0250926.
https://doi.org/10.1371/journa....
24.
Chourasia, K.N., Lal, M.K., Tiwari, R.K., Dev, D., Kardile, H.B., Patil, V.U., et al., 2021. Salinity stress in potato: Understanding physiological, biochemical and molecular responses. Life, 11(6), 545.
25.
da Silva, D.L., de Mello Prado, R., Tenesaca, L.F.L., da Silva, J.L.F., Mattiuz, B.H., 2021. Silicon attenuates calcium deficiency by increasing ascorbic acid content, growth and quality of cabbage leaves. Sci. Rep. 11(1), 1770.
26.
Dawood, M.F., Tahjib-Ul-Arif, M., Sohag, A.A.M., Latef, A.A.H., 2023. Role of acetic acid and nitric oxide against salinity and lithium stress in Canola (Brassica napus L.). Plants, 13(1), 51.
27.
Dawood, M.G., Khater, M.A., El-Awadi, M.E., 2021. Physiological role of osmoregulators proline and glycine betaine in increasing salinity tolerance of Chickpea. Egyp. J. Chem. 64(12), 7637-7648.
28.
Dolatabadian, A., Sanavy, S.A.M.M., 2008. Effect of the ascorbic acid, pyridoxine and hydrogen peroxide treatments on germination, catalase activity, protein and malondialdehyde content of three oil seeds. Notulae Botanicae Horti. Agrobotanici Cluj-Napoca 36(2), 61-66.
29.
El-Beltagi, H.S., Mohamed, H.I., Sofy, M.R., 2020. Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules, 25(7), 1702.
30.
El-Beltagi, H.S., Shah, S., Ullah, S., 2022. Impacts of ascorbic acid and alpha-tocopherol on Chickpea (Cicer arietinum L.) grown in water deficit regimes for sustainable production. Sustainability, 14, 8861.
31.
El-Hawary, M.M., Hashem, O.S.M., Hasanuzzaman, M., 2023. Seed priming and foliar application with ascorbic acid and salicylic acid mitigate salt stress in wheat. Agronomy 13(2), 493,
https://doi.org/10.3390/agrono....
32.
Elsawy, H., El-shahawy, A., Ibrahim, M., El-Halim, A.E.H.A., Talha, N., Sedky, A., et al., 2022. Properties of recycled nanomaterials and their effect on biological activity and yield of canola in degraded soils. Agriculture 12(12), 2096.
33.
Farhat, F., Ashaq, N., Noman, A., Aqeel, M., Raja, S., Naheed, R., et al., 2023. Exogenous application of moringa leaf extract confers salinity tolerance in sunflower by concerted regulation of antioxidants and secondary metabolites. J. Soil Sci. Plant Nutr. 23(3), 3806-3822.
34.
Farooq, M.A., Niazi, A.K., Akhtar, J., Farooq, M., Souri, Z., Karimi, N., et al., 2019. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol. Biochem. 141, 353-369.
35.
Giannopolitis, C.N., Ries, S.K., 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59(2), 309-314.
36.
Grieve, C.M., Grattan, S.R., 1983. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70, 303-307.
https://doi.org/10.1007/BF0237....
37.
Hamidian, M., Movahhedi-Dehnavi, M., Sayyed, R.Z., Almalki, W.H., Gafur, A., Fazeli-Nasab, B., 2023. Co-inoculation of Mycorrhiza and methyl jasmonate regulates morpho-physiological and antioxidant responses of Crocus sativus (Saffron) under salinity stress conditions. Sci. Rep. 13.
38.
Hasanuzzaman, M., Raihan, M.R.H., Alharby, H.F., Al-Zahrani, H.S., Alsamadany, H., Alghamdi, K.M., et al., 2023. Foliar application of ascorbic acid and tocopherol in conferring salt tolerance in rapeseed by enhancing K+/Na+ homeostasis, osmoregulation, antioxidant defense, and glyoxalase system. Agronomy, 13(2), 361.
39.
Hassan, A., Amjad, S.F., Saleem, M.H., Yasmin, H., Imran, M., Riaz, M., et al., 2021. Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi J. Biol. Sci. 28(8), 4276-4290.
40.
Hualpa-Ramirez, E., Carrasco-Lozano, E.C., Madrid-Espinoza, J., Tejos, R., Ruiz-Lara, S., et al., 2024. Stress salinity in plants: New strategies to cope with in the foreseeable scenario. Plant Physiol. Biochem. 108507.
41.
Iftikhar, I., Shahbaz, M., Maqsood, M.F., Zulfiqar, U., Rana, S., Farhat, F., et al., 2024. Resilient mechanism of strigolactone (GR24) in regulating morphological and biochemical status of maize under salt stress. Biocatal Agric Biotechnol. 60, 103340.
42.
Ilyas, M., Maqsood, M.F., Shahbaz, M., Zulfiqar, U., Ahmad, K., Naz, N., et al., 2024. Alleviating salinity stress in canola (Brassica napus L.) through exogenous application of salicylic acid. BMC Plant Biol. 24(1), 611.
43.
Ishaq, H., Nawaz, M., Azeem, M., Mehwish, M., Naseem, M.B.B., 2021. Ascorbic acid (Asa) improves salinity tolerance in wheat (Triticum aestivum L.) by modulating growth and physiological attributes. J. Biores. Manag. 8(1), 1.
44.
Islam, F., Yasmeen, T., Arif, M.S., Ali, S., Ali, B., Hameed, S., et al., 2016. Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul. 80, 23
36.
https://doi.org/10.1007/s10725....
45.
Jalili, I., Ebadi, A., Askari, M.A., Kalateh Jari, S., Aazami, M.A., 2023. Foliar application of putrescine, salicylic acid, and ascorbic acid mitigates frost stress damage in Vitis vinifera cv. ̒Giziluzum̕. BMC Plant Biol. 23(1), 1-15.
46.
Julkenen-Titto R., 1985. Phenolic constituent in the leaves of northern willows: methods for the analysis of certain phenolics. Agric Food Chem. 33, 213-217.
47.
Kanwal, R., Maqsood, M.F., Shahbaz, M., Naz, N., Zulfiqar, U., Ali, M.F., et al., 2024. Exogenous ascorbic acid as a potent regulator of antioxidants, osmo-protectants, and lipid peroxidation in pea under salt stress. BMC Plant Biol. 24(1), 247.
48.
Khalid, F., Rasheed, Y., Asif, K., Ashraf H., Maqsood M.F., Shahbaz M., et al., 2024. Plant biostimulants: Mechanisms and applications for enhancing plant resilience to abiotic stresses. J. Soil Sci. Plant Nutr. 24, 6641-6690.
https://doi.org/10.1007/s42729....
49.
Khalid, M., Rehman, H.M., Ahmed, N., Nawaz, S., Saleem, F., Ahmad, S., et al., 2022. Using exogenous melatonin, glutathione, proline, and glycine betaine treatments to combat abiotic stresses in crops. Int. J. Mol. Sci. 23(21), 12913.
50.
Khazaei, Z., Esmaielpour, B., Estaji, A., 2020. Ameliorative effects of ascorbic acid on tolerance to drought stress on pepper (Capsicum annuum L.) plants. Physiol. Mol. Biol. Plants 26, 1649-1662.
51.
Kumar, V., Srivastava, A.K., Sharma, D., Pandey, S.P., Pandey, M., Dudwadkar, A., et al., 2024. Antioxidant defense and ionic homeostasis govern stage-specific response of salinity stress in contrasting rice varieties. Plants 13(6), 778.
52.
Liu, C., Yang, S.X., Deng, L., 2015. Determination of internal qualities of Newhall navel oranges based on NIR spectroscopy using machine learning. J. Food Eng. 161, 16-23.
https://doi.org/10.1016/j.jfoo....
53.
Maqsood, M.F., Shahbaz, M., Arfan, M., Basra, S.M.A., 2021. Presowing seed treatment with glycine betaine confers NaCl tolerance in quinoa bymodulating some physiological processes and antioxidant machinery. Turk. J. Bot. 45(1), 1-14.
54.
Maqsood, M.F., Shahbaz, M., Zulfiqar, U., Saman, R.U., Rehman, A., Naz, N., et al., 2023. Enhancing wheat growth and yield through salicylic acid-mediated regulation of gas exchange, antioxidant defense, and osmoprotection under salt stress. Stresses 3, 372-386.
https://doi.org/10.3390/stress....
55.
Marinova, D., Ribarova, F., Atanassova, M., 2005. Total phenolics and flavonoids in Bulgarian fruits and vegetables. JU Chem. Metal 40(3), 255-260.
56.
Mohamed, I.A., Shalby, N., MA El-Badri, A., Saleem, M.H., Khan, M.N., Nawaz, M., et al., 2020. Stomata and xylem vessels traits improved by melatonin application contribute to enhancing salt tolerance and fatty acid composition of Brassica napus L. plants. Agronomy, 10(8), 1186.
57.
Moradbeygi, H., Jamei, R., Heidari, R., Darvishzadeh, R., 2020. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Sci. Hortic. 272, 109537.
58.
Mukherjee, S.P., Choudhuri, M.A., 1983. Implications of water stress‐induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plant. 58(2), 166-170.
59.
Mukhopadhyay, R., Sarkar, B., Jat, H.S., Sharma, P.C., Bolan, N.S., 2021. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manag. 280, 111736.
60.
Murray, J.R., Hackett, W.P., 1991. Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiol. 97(1), 343-351.
61.
Naheed, R., Zahid, M., Aqeel, M., Maqsood, M.F., Kanwal, H., Khalid, N., et al., 2022. Mediation of growth and metabolism of Pisum sativum in salt stress potentially be credited to thiamine. J. Soil Sci. Plant Nutr. 22(3), 2897-2910.
62.
Naz, S., Mushtaq, A., Ali, S., Muhammad, H.M.D., Saddiq, B., Ahmad, R., et al., 2022. Foliar application of ascorbic acid enhances growth and yield of lettuce (Lactuca sativa L.) under saline conditions by improving antioxidant defence mechanism. Functional Plant Biol. 51.
63.
Noor, J., Ullah, A., Saleem, M.H., Tariq, A., Ullah, S., Waheed, A., et al., 2022. Effect of jasmonic acid foliar spray on the morpho-physiological mechanism of salt stress tolerance in two soybean varieties (Glycine max L.). Plants 11(5), 651.
64.
Noreen, S., Sultan, M., Akhter, M.S., Shah, K.H., Ummara, U., Manzoor, H., et al., 2021. Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. Plant Physiol. Biochem. 158, 244-254.
65.
Omara, A.E.D., Hafez, E.M., Osman, H.S., Rashwan, E., El-Said, M.A., Alharbi, K., et al., 2022. Collaborative impact of compost and beneficial rhizobacteria on soil properties, physiological attributes, and productivity of wheat subjected to deficit irrigation in salt affected soil. Plants 11(7), 877.
66.
Ortiz-Espín, A., Sánchez-Guerrero, A., Sevilla, F., Jiménez, A., 2017. The role of ascorbate in plant growth and development. Ascorbic Acid in Plant Growth, Development and Stress Tolerance 25-45.
67.
Parveen, S., Arfan, M., Wahid, A., 2024. Exogenous applications of ascorbic acid improve wheat growth, physiology and yield under salinity stress via a balance in antioxidant production and ROS scavenging. New Zealand J. Crop Hort. Sci. 53(5), 1384-1407.
https://doi.org/10.1080/011406....
68.
Perveen, S., Hussain, S.A., 2021. Methionine-induced changes in growth, glycine betaine, ascorbic acid, total soluble proteins and anthocyanin contents of two Zea mays L. varieties under salt stress. J. Animal Plant Sci. 31(1), 131-142.
69.
Rady, M.O., Semida, W.M., Abd El-Mageed, T.A., Hemida, K.A., Rady, M.M., 2018. Up-regulation of antioxidative defense systems by glycine betaine foliar application in onion plants confer tolerance to salinity stress. Sci. Hortic. 240, 614-622.
70.
Raees, N., Ullah, S., Nafees, M., 2023. Interactive effect of tocopherol, salicylic acid and ascorbic acid on agronomic characters of two genotypes of Brassica napus L. under induced drought and salinity stresses. Gesunde Pflanzen 75, 1905-1923.
https://doi.org/10.1007/s10343....
71.
Rasel, M., Tahjib-Ul-Arif, M., Hossain, M.A., Hassan, L., Farzana, S., Brestic, M., 2021. Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism. J. Plant Growth Regul. 40, 1853-1868.
72.
Rasheed, R., Ashraf, M.A., Parveen, S., Iqbal, M., Hussain, I., 2014. Effect of salt stress on different growth and biochemical attributes in two canola (Brassica napus L.) cultivars. Comm. Soil Sci. Plant Anal. 45(5), 669-679.
73.
Rasheed, Y., Khalid, F., Ashraf, H., Asif K., Maqsood M.F., Naz N., et al., 2024. Enhancing plant stress resilience with osmolytes and nanoparticles. J. Soil Sci. Plant Nutr. 24, 1871-1906.
https://doi.org/10.1007/s42729....
74.
Raza, A., 2021. Eco-physiological and biochemical responses of rapeseed (Brassica napus L.) to abiotic stresses: consequences and mitigation strategies. J. Plant Growth Regul. 40(4), 1368-1388.
75.
Rezayian, M., Zarinkamar, F., 2023. Nitric oxide, calmodulin and calcium protein kinase interactions in the response of Brassica napus to salinity stress. Plant Biol. 25(3), 411-419.
76.
Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M., Hasanuzzaman, M., 2021. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10(2), 277.
77.
Sadia, H., Shahbaz, M., Kiran, A., Saleem, M.F., 2023. Interactive effect of salicylic acid and ascorbic acid on gaseous exchange and mineral nutrients of chicory (Cichorium intybus L.) Under saline conditions. Pak. J. Bot. 55(6), 1999-2012.
78.
Saheed, S.A., Qader, H.R., 2020. Impact of ascorbic acid and potassium on okra (Abelmoschus esculentus) growth in saline condition. Zanco J. Pure Appl. Sci. 32(4), 144-150.
79.
Sardar, H., Ramzan, M.A., Naz, S., Ali, S., Ejaz, S., Ahmad, R., et al., 2023. Exogenous application of melatonin improves the growth and productivity of two broccoli (Brassica oleracea L.) cultivars under salt stress. J. Plant Growth Regul. 1-15.
80.
Shabbir, R., Javed, T., Hussain, S., Ahmar, S., Naz, M., Zafar, H., et al., 2022. Calcium homeostasis and potential roles in combatting environmental stresses in plants. S. Afr. J. Bot. 148, 683-693.
81.
Shahzad, B., Rehman, A., Tanveer, M., Wang, L., Park, S.K., Ali, A., 2022. Salt stress in brassica: effects, tolerance mechanisms, and management. J. Plant Growth Regul. 1-15.
82.
Shahzad, H., Ullah, S., Iqbal, M., Bilal, H.M., Shah, G.M., Ahmad, S., et al., 2019. Salinity types and level-based effects on the growth, physiology and nutrient contents of maize (Zea mays). Ital. J. Agron. 14(4), 199-207.
83.
Shen, J., Liu, Y., Wang, X., Bai, J., Lin, L., Luo, F., et al., 2023. A comprehensive review of health-benefiting components in rapeseed oil. Nutrients 15(4), 999.
84.
Siles, L., Hassall, K.L., Sanchis Gritsch, C., Eastmond, P.J., Kurup, S., 2021. Uncovering trait associations resulting in maximal seed yield in winter and spring oilseed rape. Front. Plant Sci. 12, 697576.
85.
Velikova, V., Yordanov, I., Edreva, A.J.P.S., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151(1), 59-66.
86.
Wang, F., Chen, X., Dong, S., Jiang, X., Wang, L., Yu, J., et al., 2020. Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato. Plant Biotechnol. J. 18, 1041-1055. doi: 10.1111/pbi.13272.
87.
Wang, C., Li, Z., Wu, W., 2023. Understanding fatty acid composition and lipid profile of rapeseed oil in response to nitrogen management strategies. Food Res. Int. 165, 112565.
88.
Wang, W., Pang, J., Zhang, F., Sun, L., Yang, L., Fu, T., et al., 2022. Salt responsive transcriptome analysis of canola roots reveals candidate genes involved in the key metabolic pathway in response to salt stress. Sci Rep. 12(1), 1666.
89.
Wang, Y.H., Zhang, G., Chen, Y., Gao, J., Sun, Y.R., Sun, M.F., et al., 2019. Exogenous application of gibberellic acid and ascorbic acid improved tolerance of okra seedlings to NaCl stress. Acta Physiol. Plant. 41, 1-10.
90.
Wolf, B., 1982. A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Commun Soil Sci. Plant Anal. 13(12), 1035-1059.
https://doi.org/ 10.1080/00103628209367332.
91.
Wu, P., Li, B., Liu, Y., Bian, Z., Xiong, J., Wang, Y., et al., 2024. Multiple physiological and biochemical functions of ascorbic acid in plant growth, development, and abiotic stress response. Int. J. Mol. Sci. 25, 1832.
https://doi.org/10.3390/ijms25....
92.
Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., Cai, Y., 2019. The roles of environmental factors in regulation of oxidative stress in plant. BioMed Res Int. 1, 9732325.
93.
Xu, Y., Huang, B., 2018. Exogenous ascorbic acid mediated abiotic stress tolerance in plants. In: Ascorbic acid in plant growth, development and stress tolerance 233-253. Cham: Springer International Publishing.
94.
Yagi, K., 1982. Assay for serum lipid peroxide level and its clinical significance. Lipid peroxides in biology and medicine, 223, 242.
95.
Yaqoob, H., Akram, N.A., Iftikhar, S., Ashraf, M., Khalid, N., Sadiq, M., et al., 2019. Seed pretreatment and foliar application of proline regulate morphological, physio-biochemical processes and activity of antioxidant enzymes in plants of two cultivars of quinoa (Chenopodium quinoa Willd.). Plants 8(12), 588.
96.
Yemm, E.W., Willis, A., 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57(3), 508.
97.
Zafar, S., Hasnain, Z., Danish, S., Battaglia, M.L., Fahad, S., Ansari, M.J., et al., 2024. Modulations of wheat growth by selenium nanoparticles under salinity stress. BMC Plant Biol. 24(1), 35.
98.
Zeeshan, M., Lu, M., Sehar, S., Holford, P., Wu, F., 2020. Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy 10(1), 127.
99.
Zhang, L., Ma, H., Chen, T., Pen, J., Yu, S., Zhao, X., 2014. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One, 9(11), e112807.
100.
Zhang, L., Martinelli, E., Senizza, B., Miras-Moreno, B., Yildiztugay, E., Arikan, B., et al., 2021. The combination of mild salinity conditions and exogenously applied phenolics modulates functional traits in lettuce. Plants 10(7), 1457.
101.
Zhang, R., Fang, X., Feng, Z., Chen, M., Qiu, X., Sun, J., et al., 2024. Protein from rapeseed for food applications: Extraction, sensory quality, functional and nutritional properties. Food Chem. 439, 138109.
102.
Zhang, W.W., Zhao, S.Q., Gu, S., Cao, X.Y., Zhang, Y., Niu, J.F., et al., 2022. FvWRKY48 binds to the pectate lyase FvPLA promoter to control fruit softening in Fragaria vesca. Plant Physiol. 189, 1037-1049.
103.
Zoufan, P., Azad, Z., Ghahfarokhie, A.R., Kolahi, M., 2020. Modification of oxidative stress through changes in some indicators related to phenolic metabolism in Malva parviflora exposed to cadmium. Ecotoxicol. Environ. Saf. 187, 109811.