RESEARCH PAPER
Growth, photosynthesis and production of safflower (Carthamus tinctorius L.) in response to different levels of salinity and drought
 
More details
Hide details
1
Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2
Department of Soil and Water Research, Kerman Agricultural and Natural Resources Research and Education Centre, AREEO, Kerman, Iran
3
Department of Crop and Horticultural Sciences Research, Isfahan Agricultural and Natural Resources Research and Education Centre, AREEO, Isfahan, Iran
CORRESPONDING AUTHOR
Hossein Babazadeh   

Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Tehran, Iran
Final revision date: 2022-03-24
Acceptance date: 2022-03-31
Publication date: 2022-04-27
 
Int. Agrophys. 2022, 36(2): 93–104
 
HIGHLIGHTS
  • • the effects of simultaneously stresses on important step of plant growth
  • • the evaluation of the photosynthetic, growth, and yield of safflower
  • • drought and salinity stress negatively affect on photosynthesis, plant growth, and yield
KEYWORDS
TOPICS
ABSTRACT
In order to investigate the effects of salinity and drought stress on the photosynthesis, growth and production responses of safflower, two experiments were performed in Isfahan, Iran using four different levels of saline water, four different levels of irrigation water, and their combinations which were applied at three different growth stages (stem elongation, heading, and flowering) in 2016 and 2017. A split-plot experiment based on complete block design was performed with three replicates. The plant height, leaf area index, relative water content, number of heads per plant, number of seeds per head, 1000-seeds weight, seed yield, oil content, net photosynthetic rate, stomatal conductance and transpiration rate decrease under salinity, drought, and simultaneous stresses. The reduction in seed yield caused by the 10 dS m-1 and 40% of irrigation treatment was higher at the heading stage (92.6%) when compared with the stem elongation (71.04%) and flowering (89.9%) stages. In general, the reduction in seed yield caused by salinity-drought stress was higher at the heading stage as compared with stem elongation and the flowering stages.
CONFLICT OF INTEREST
No potential conflict of interest was reported by the authors.
 
REFERENCES (64)
1.
Ahmed I.M., Dai H.X., Zheng W., Cao F.B., Zhang G.P., Sun D.F., and Wu F.B., 2013. Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol. Biochem., 63: 49-60. doi: 10.1016/j.plaphy.2012.11.004.
 
2.
Amooaghaie R., and Moghym S., 2011. Effect of polyamines on thermo tolerance and membrane stability of soybean seedling. African J. Biotechnol., 10: 9673-9679. doi: 10.5897/AJB10.2446.
 
3.
Ashrafi E., and Razmjoo K., 2010. Effect of irrigation regimes on oil content and composition of safflower (Carthamus tinctorius L.) cultivars. J. American Oil Chemists' Society, 87(5): 499-506. doi: org/10.1007/s11746-009-1527-8.
 
4.
AOCS, 1993. Official Methods and Recommended Practices of the American Oil Chemists Society. American Oil Chemists Society, 1608, Broadmoor Drive, Champaign, Illionis 61826-3489.
 
5.
Babazadeh H., Sarai Tabrizi M., and Hassanpour Darvishi H., 2016. Adopting adequate leaching requirement for practical response models of basil to salinity. Int. Agrophys., 30(3): 275-283. doi: 10.1515/intag-2016-0002.
 
6.
Babazadeh H., Tabrizi M.S., and Homaee M., 2017. Assessing and modifying macroscopic root water extraction basil (Ocimum basilicum) models under simultaneous water and salinity stresses. Soil Sci. Soc. Am. J., 81: 10-19. https://doi.org/10.2136/sssaj2....
 
7.
Bagheri H., and Sam-Daliri M., 2011. Effect of water stress on agronomic traits of spring safflower cultivars (Carthamus tinctorius L.). Australian J. Basic Applied Sci., 5: 2621-2624.
 
8.
Bates L.S., 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207. https://doi:org/10.1007/BF0001....
 
9.
Campos P.S., Quartin V., Ramalho J.C., and Nunes M.A., 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J. Plant Physiol., 160: 283-292. doi:org/10.1078/0176-1617-00833.
 
10.
Chaves M.M., Flexas J., and Pinheiro C., 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals Botany, 103: 551-560. doi: 10.1093/aob/mcn125.
 
11.
Chen S., Wang Z., Guo X., Rasool G., Zhang J., Xie Y., Hamoud Y.A., and Shao G., 2019. Effects of vertically heterogeneous soil salinity on tomato photosynthesis and related physiological parameters. Scientia Hort., 249: 120-130. https://doi:org/10.1016/j.scie....
 
12.
Cho K., Toler H., Lee J., Ownley B., Stutz J.C., Moore J.L., and Auge R.M., 2006. Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J. Plant Physiol., 163:517-528. https://doi.org/10.1016/j.jplp....
 
13.
Farahbakhsh H., Pasandi Pour A., and Reiahi N., 2017. Physiological response of henna (Lawsonia inermise L.) to salicylic acid and salinity. Plant Production Sci., 20(2): 237-247. https://doi:org/10.1080/134394....
 
14.
Flemmer A., Franchini M., and Lindström L., 2015. Description of safflower (Carthamus tinctorius) phenological growth stages according to the extended BBCH scale. Ann. Appl. Biol., 166: 331-339. https://doi.org/10.1111/aab.12....
 
15.
Flexas J., Bota J., Loreto F., Cornic G., and Sharkey T., 2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol., 6: 269-279. doi: 10.1055/s-2004-820867.
 
16.
Gardner F.P., Pearce R.B., and Mitchell R.L., 1985. Physiology of Crop Plants. Iowa State University Press, Ames, Iowa, USA.
 
17.
Gilbert J., 2008. International safflower production – an overview. 7th Int. Safflower Conf., November 3-6, Wagga Wagga, Australia.
 
18.
Grassi G., and Magnani F., 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell Environ., 28: 834-849. doi:10.1016/j.indcrop.2014.10.058.
 
19.
Grzesiak T.M., Janowiak F., Szczyrek P., Kaczanowska K., Ostrowska A., Rut G., Hura T., Rzepka A., and Grzesiak S., 2016. Impact of soil compaction stress combined with drought or water logging on physiological and biochemical markers in two maize hybrids. Acta Physiologiae Plantarum, 38: 109. https://doi.org/10.1007/s11738....
 
20.
Guo J., Ling H., Wu Q., Xu L., and Que Y., 2014. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Scientific Report. 4: 7042. doi: 10.1038/srep07042. doi: 10.1038/srep07042.
 
21.
Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., and Ahmad A., 2012. Role of proline under changing environments: a review. Plant Signal Behavior, 7: 1456-1466. doi: 10.4161/psb.21949.
 
22.
Hernandez-Santana V., Fernández J.E., Cuevas M.V., Perez-Martin A., and Diaz-Espejo A., 2017. Photosynthetic limitations by water deficit: effect on fruit and olive oil yield, leaf area and trunk diameter and its potential use to control vegetative growth of super-high density olive orchards. Agric. Water Manag., 184: 9-18. doi: org/10.1016/j.agwat.2016.12.016.
 
23.
Hojati M., Modarres-Sanavy S.A.M., Karimi M., and Ghanati F., 2011. Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta Physiologiae Plantarum, 33: 105-112. doi: org/10.1007/s11738-010-0521-y.
 
24.
Hsiao T.C., 1973. Physiological effects of plant in response to water stress. Plant Physiol., 24: 519-570. doi: org/10.3389/fpls.2014.00086.
 
25.
Iftikhar Hussain M., Lyra D.A., Farooq M., Nikoloudakis N., and Khalid N., 2016. Salt and drought stresses in safflower: a review. Agronomy Sustain. Developt., 36: 4-31. doi: org/10.1007/s13593-015-0344-8.
 
26.
Ikkonen E.N., Shibaeva T.G., and Titov A.F., 2018. Influence of daily short-term temperature drops on respiration to photosynthesis ratio in chilling-sensitive plants. Russian J. Plant Physiol., 56: 78-83. doi: org/10.1134/S1021443718010041.
 
27.
Jamil S., Riaz M., Ashraf M., and Foolad M.R., 2011. Gene expression profiling of plants under salt stress. Crit. Reviews Plant Sci., 30: 435-458. doi: org/10.1080/07352689.2011.605739.
 
28.
Jin J., Niu J., Guo T., Zhou R., and Sun L.Z., 2020. The effect of drought on physiological responses of forage plants to salt stresses depends on occurring time. Acta Physiologiae Plantarum, 42:91. doi: org/10.1007/s11738-020-03083-3.
 
29.
Johnson R., Petrie S., Franchini M.C., and Evans M., 2012. Yield and yield components of winter-type safflower. Crop Sci., 52: 2358-2364. doi: 10.2135/cropsci2011.12.0659.
 
30.
Kalaji H.M., Baba W., Gediga K., Goltsev V., Samborska I.A., Cetner M.D., Dimitrova S., Piszcz U., Bielecki K., Karmowska K., Dankov K., and Kompala-Baba A., 2018. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth Res., 136: 329-343. doi: org/10.1007/s11120-017-0467-7.
 
31.
Kar G., Kumar A., and Martha M., 2007. Water use efficiency and crop coefficients of dry season oilseed crops. Agric. Water Manag., 87(1): 73-82. doi: org/10.1016/j.agwat.2006.06.002.
 
32.
Kaya M.D., 2009. The role of hull in germination and salinity tolerance in some sunflower (Helianthus annuus L.) cultivars. African J. Biotechnol., 8(4): 597-600.
 
33.
Khan A., Anwar Y., Hasan M.M., Iqbal A., Ali M., Alharby H.F., Hakeem K.R., and Hasanuzzaman M., 2017. Attenuation of drought stress in brassica seedlings with exogenous application of Ca2+ and H2O2. Plants, 6: 1-13. doi: 10.3390/plants6020020.
 
34.
Kong X., Luo Z., Dong H., Eneji A.E., and Li W., 2012. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton. J. Experim. Botany, 63(5):2105–2116, doi:10.1093/jxb/err420.
 
35.
Kong X.Q., Luo Z., Dong H.H., Li W.J., and Chen Y.Z., 2017. Non-uniform salinity in the root zone alleviates salt damage by increasing sodium, water and nutrient transport genes expression in cotton. Scientific Reports, 7: (1). doi: 10.1038/s41598-017-03302-x.
 
36.
Krasensky J., and Jonak C., 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Experim. Botany, 63: 1593-1608. doi: 10.1093/jxb/err460.
 
37.
Mahlooji M., Seyed Sharifi R., Razmjoo J., Sabzalian M.R., and Sedghi M., 2018. Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes. Photosynthetica, 56: 549-556. doi:10.1007/s11099-017-0699-y.
 
38.
Manuchehri R., and Salehi H., 2014. Physiological and biochemical changes of common bermudagrass (Cynodon dactylon [L.] Pers.) under combined salinity and deficit irrigation stresses. South African J. Botany, 92:82-88. doi: org/10.1016/j.sajb.2014.02.006.
 
39.
Masoumi A., Kafi M., Khazaei H., and Davari K., 2010. Effect of drought stress on water status, elecrolyte leakage and enzymatic antioxidants of kochia (Kochia scoparia) under saline condition. Pakistan J. Botany, 42: 3517-3524.
 
40.
Mohammadi M., Ghassemi-Golezani K., Chaichi M.R., and Safikhani S., 2018. Seed oil accumulation and yield of safflower affected by water supply and harvest time. Agronomy J., 110: 1-8. doi: org/10.2134/agronj2017.06.0365.
 
41.
Munns R., 2011. Plant adaptation to salt and water stress: Differences and commonalities. Advances Botanical Res., 557: 1-32. doi: org/10.1016/B978-0-12-387692-8.00001-1.
 
42.
Munns R., and Tester M., 2008. Mechanisms of salinity tolerance. Ann. Review Plant Biol., 59: 651-681. doi: 10.1146/annurev.arplant.59.032607.092911.
 
43.
Nabipour M., Meskarbashee M., and Yousefpour H., 2007. The effect of water deficit on yield and yield components of safflower (Carthamus tinctorius L.). Pakistan J. Biol. Sci., 10: 421-426. doi: 10.3923/pjbs.2007.421.426.
 
44.
Nonami H., 1998. Plant water relations and control of cell elongation at low water potentials. J. Plant Res., 111(3): 373-382. doi: org/10.1007/BF02507801.
 
45.
Parida A.K., and Das A.B., 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology Environ. Safety, 60: 324-349. doi: org/10.1016/j.ecoenv.2004.06.010.
 
46.
Patil N.M., 2012. Adaptations in response to salinity in safflower cv. Bhima. Asian J. Crop Sci., 4: 50-62. doi: 10.3923/ajcs.2012.50.62.
 
47.
Pinheiro C., and Chaves M., 2011. Photosynthesis and drought: can we make metabolic connections from available data? J. Experim. Botany, 62: 869-882. doi: org/10.1093/jxb/erq340.
 
48.
Pourdad S., 2008. Study on drought resistance indices in spring safflower. Acta Agronomica Hungarica, 56: 203-212. doi: 10.1556/AAgr.56.2008.2.9.
 
49.
Rauf S., 2008. Breeding sunflower (Helianthus annuus L.) for drought tolerance. Communications Biometry Crop Sci., 3: 29-44.
 
50.
Sahin U., Ekinci M., Ors S., Turan M., Yildiz S., and Yildirim E., 2018. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Horticulturae, 240: 196-204. doi: org/10.1016/j.scienta.2018.06.016.
 
51.
Sajedi N.A., Ferasat M., Mirzakhani M., and Mashhadi Akbar Boojar M., 2012. Impact of water deficit stress on biochemical characteristics of safflower cultivars. Physiol.Molecular Biol. Plants, 18(4): 323-329. doi: 10.1007/s12298-012-0129-3.
 
52.
Shahrokhnia M.H., and Sepaskhah A.R., 2017. Physiologic and agronomic traits in safflower under various irrigation strategies, planting methods and nitrogen fertilization. Industrial Crops Products, 95: 126-139. doi:10.1016/j.indcrop.2016.10.021.
 
53.
Shrivastava P., and Kumar R., 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biological Sci., 22: 123-131. doi:org/10.1016/j.sjbs.2014.12.001.
 
54.
Siddiqi E.H., Ashraf M., Al-Qurainy F., and Akram N.A., 2011. Salt-induced modulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.). J. Science Food Agric., 91(15): 2785-2793. doi: 10.1002/jsfa.4522.
 
55.
Siddiqi E.H., Ashraf M., Hussain M., and Jamil A., 2009. Assessment of inter cultivar variation for salt tolerance in safflower (Carthamus tinctorius L.) using gas exchange characteristics as selection criteria. Pakistan J. Botany, 41(5): 2251-2259.
 
56.
Siddiqui M.S., Thodey K., Trenchard I., and Smolke Ch.D., 2012. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res., 12(2):144-170, doi:10.1111/j.1567-1364.2011.00774.x.
 
57.
Singh S., Angadi S.V., Grover K., Begna S., and Auld D., 2016. Drought response and yield formation of spring safflower under different water regimes in the semiarid Southern High Plains. Agric. Water Manag., 163: 354-362. doi: org/10.1016/j.agwat.2015.10.010.
 
58.
Sreenivasulu N., Grimm B., Wobus U., and Weschke W., 2000. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiologia Plantarum, 109: 435-442. doi:10.1034/j.1399-3054.2000.100410.x.
 
59.
Umar M., and Siddiqui Z.S., 2018. Physiological performance of sunflower genotypes under combined salt and drought stress environment. Acta Botanica Croatica, 77 (1): 36-44. https://doi.org/10.2478/botcro....
 
60.
Valentovič P., Luxová M., Kolarovič L., and Gašparíková O., 2006. Effect of osmotic stress on compatible solutes content, membrane stability and water relationsin two maize cultivars. Plant Soil Environ., 52, 186-191.
 
61.
Weiss E., 1971. Castor, sesame and safflower. Cambridge University Press, London, UK.
 
62.
Yan M., 2015. Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. South Africa J. Botany, 99: 88-92. doi: org/10.1016/j.sajb. 2015.03.195.
 
63.
Yeilaghi H., Arzani A., Ghaderian M., Fotovat R., Feizi M., and Pourdad S.S., 2012. Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chem., 130(3): 618-625. doi: org/10.1016/j.foodchem.2011.07.085.
 
64.
Zhang X., Lu G., Long W., Zou X., Li F., and Nishio T., 2014. Recent progress in drought and salt tolerance studies in Brassica crops. Breeding Sci., 64: 60-73. doi: 10.1270/jsbbs.64.60.
 
eISSN:2300-8725
ISSN:0236-8722