RESEARCH PAPER
Interpretable machine learning unravels hierarchical controls on soil organic carbon in hyperarid oases of the Eastern Tarim Basin
More details
Hide details
1
Urumqi Natural Resources Comprehensive Survey Center, China Geological Survey, Urumqi, 555 Xihuan North Road, 830057, China
2
Baotou Teachers College, Baotou, 24 Ziyou Road, 014030, China
3
Hami Geological Brigade, Geological Bureau of Xinjiang Uygur Autonomous Region, Hami, 38 Jianguo North Road, 839099, China
4
Bayingolin Geological Brigade, Geological Bureau of Xinjiang Uygur Autonomous Region, Korla, 83 West Tianshan Road, 841000, China
5
Hubei Provincial Land and Resources Information Center, Geological Bureau of Hubei Province, Wuhan, 27, Gongzheng Road, 430071, China
These authors had equal contribution to this work
Final revision date: 2025-05-21
Acceptance date: 2025-06-09
Publication date: 2025-08-19
Corresponding author
Jingyu liu
Urumqi Natural Resources Comprehensive Survey Center, China Geological Survey, China
Int. Agrophys. 2025, 39(4): 443-456
Data availability. The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
HIGHLIGHTS
- Human activities surpass climate in SOC control (14.2% vs. <8%)
- RF model decodes SOC drivers (R²=0.81; RMSE=1.32 g kg⁻¹)
- Eostatistics-ML integration guides clay-SOC management
KEYWORDS
TOPICS
ABSTRACT
Understanding spatial drivers of soil organic carbon in arid oasis ecosystems is essential for guiding precision soil management and enhancing land sustainability. This study integrates 644 surface samples and 9 soil profiles with multisource environmental data in the hyperarid eastern Tarim Basin, employing geostatistics and machine learning (random forest, support vector machines, ordinary least squares, back propagation) to quantify driving mechanisms. Key findings: 1) extreme soil organic carbon spatial polarization (0.50-21.70 g kg-1, mean = 4.47 g kg-1) with northern and southern alluvial zones containing 2.1 times higher soil organic carbon than central deserts (p < 0.01); 2) random Forest achieved optimal prediction (coefficient of determination = 0.81, root mean square error = 1.32 g kg-1) by resolving nonlinear soil organic carbon-environment interactions; 3) pedogenic properties (texture, cation exchange capacity, salini-
ty; 47.5%) dominated soil organic carbon variation, followed by anthropogenic drivers (land use intensity, 14.2%) and soil taxo-nomy (10.9%), while climate and topography showed minimal control (< 8%). Human-modified processes override climatic constraints in shaping soil organic carbon patterns, providing actionable insights for clay-organic stabilization and irrigation optimization. This methodology establishes a transferable framework for deciphering soil organic carbon dynamics in global drylands, directly informing climate-resilient land management.
ACKNOWLEDGEMENTS
We thank to the Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Geological Survey Projects of the China Geological Survey, and Science and Technology Innovation Fund for the Integrated Natural Resources Survey Command Centre. We are equally grateful to the journal editors and reviewers for their support in the publication of the article.
FUNDING
This work was founded by the Key Laboratory of Coupling Process and Effect of Natural Resources Elements (No.2024KFKT019) Geological Survey Projects of the China Geological Survey (DD20242035) (2024-2026).
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
REFERENCES (54)
1.
Abdellafou, B.K., Zidi, K., Aljuhani, A., Taouali, O., Harkat, M.F., 2025. Machine learning for smart soil monitoring. Comput. Mater. Con. 83, 3007-3023.
https://doi.org/10.32604/CMC.2....
2.
Annalisa, S., Zhang, Y.K., Huang, J.Y., Hu, J., Keith, P., Alfred, H.E., 2024. Rates of soil organic carbon change in cultivated and afforested sandy soils. Agric. Ecosys. Environ. 360, 109632.
https://doi.org/10.1016/J.AGEE....
3.
Batista, V.P., Möller, M., Schmidt, K., Waldau, T., Seufferheld, K., Htitiou, A., et al., 2025. Soil-erosion events on arable land are nowcast by machine learning. Catena 256, 109080.
https://doi.org/10.1016/J.CATE....
4.
Ben A.A., A., Shukla, M., 2024. Assessment of soil organic and inorganic carbon stocks in arid and semi-arid rangelands of southeastern New Mexico. Ecol. Indic. 166, 112398-112398.
https://doi.org/10.1016/J.ECOL....
5.
Boubehziz, S., Piccini, C., González, M.A.J., Almendros, G., 2024. Spatial distribution of soil organic carbon quality descriptors determining factors that affect its sequestration in Northeast Algeria. J. Environ. Manag. 358, 120772.
https://doi.org/10.1016/J.JENV....
6.
Borah, B., Parmar, P., 2024. Soil organic carbon dynamics: drivers of climate change-induced soil organic carbon loss at various ecosystems. Int. J. Environ. Climate Change 14, 153-174.
https://doi.org/10.9734/IJECC/....
7.
Cao, X.M., Cui, M.C., Xi, L., Feng, Y.M., 2024. Spatial-temporal process of land use/land cover and desertification in the Circum-Tarim Basin during 1990-2020. Land. 13, 735.
https://doi.org/10.3390/LAND13....
8.
Dipakama, C.M., Dieu, N.J., Watha, N.N., Nguelet, M.I., Kimpouni, V., 2024. Impact of agricultural activities on soil particle size, ph, and organic matter in the Dimonika Biosphere Reserve, Mayombe (Republic of Congo). Environ Pollut. 14, 1-1.
https://doi.org/10.5539/EP.V14....
9.
Fartyal, A., Bargali, S.S., Bargali, K., Negi, B., 2025. Changes in soil properties, organic carbon, and nutrient stocks after land‐use change from forests to grasslands in Kumaun Himalaya, India. Land Degrad. Dev. 36, 2438-2457.
https://doi.org/10.1002/LDR.55....
10.
Fenton, O., Bondi, G., Bracken, C.J., O’Sullivan, L., Sangil, L.L., Tuohy, P., et al., 2024. Relative and absolute difference in soil organic carbon stocks in grassland soils in Ireland: Impact of rock fragments, bulk density and calculation methods. Geoderma Reg. 36, e769.
https://doi.org/10.1016/J.GEOD....
11.
Fu, P., Clanton, C., Demuth, M.K., Goodman, V., Griffith, L., Young, K.M., et al., 2024. Accurate quantification of 0-30 cm soil organic carbon in croplands over the continental United States using machine learning. Remote Sensing 16, 2217-2217.
https://doi.org/10.3390/RS1612....
12.
Gupta, V., Bangar, K.S., Parmar, B.B., Bangre, J., Kumar, K., Yadav, B., 2024. Unlocking the secrets of soilhealth: exploring the influence of natural and synthetic nutrients on soil organic carbon and active and passive carbon pool in vertisols. Int. J. Plant Sci. 36, 556-561.
https://doi.org/10.9734/IJPSS/....
13.
Huong, M.T.N., Quynh, P.T.L., Van, V.H., Tu, C.V., 2022. Biodegradable and seasonal variation of organic carbon affected by anthropogenic activity: a case in Xuan Thuy Mangrove Forest, North Vietnam. Water 14, 773-773.
https://doi.org/10.3390/W14050....
14.
Huyzentruyt, M., Belliard, J.P., Saintilan, N., Temmerman, S., 2024. Identifying drivers of global spatial variability in organic carbon sequestration in tidal marsh sediments. Sci. Total Environ. 957, 177746.
https://doi.org/10.1016/J.SCIT....
15.
Iseas, S.M., Sainato, M.C., Romay, C., 2025. Supplemental irrigation in the humid Pampean region: Effects on soil salinity, physical properties, nutrients and organic carbon. Soil Till. Res. 248, 106421.
https://doi.org/10.1016/J.STIL....
16.
Joshi, K.R., Garkoti, C.S., 2025. Ecosystem carbon storage, allocation and carbon credit values of major forest types in the central Himalaya. Carbon Res. 4, 7-7.
https://doi.org/10.1007/S44246....
17.
Li, C., Ran, M., Song, L., 2024. Temperature effects on cropland soil particulate and mineral-associated organic carbon are governed by agricultural land-use types. Geoderma 448, 116942.
https://doi.org/10.1016/j.geod....
18.
Li, S., Manuel, D., Ding, J.X., et al., 2024. Intrinsic microbial temperature sensitivity and soil organic carbon decomposition in response to climate change. Global Change Biol. 30, e17395.
https://doi.org/10.1111/GCB.17....
19.
Li, W.D., Li, A.W., Cheng, J.L., Chen, D., Mao, Y.R., Chen, X.Y., et al., 2024. The impact of agricultural land use patterns and soil types on the components of soil organic carbon in the plow layer in the Tuojiang River Basin. J. Ecol. Rural Environ. 3, 1-15.
https://doi.org/10.19741/j.iss....
20.
Li, X.L., Zhang, Q.W., Li, M.N., Shi, Y.L., Yu, B.W., Jing, X.K., et al., 2024. The interaction of black soil long gentle slope topography and horizontal ridges on the spatial differentiation of soil organic carbon. Trans. Chin. Soc. Agric. Eng. 40, 103-113.
https://doi.org/10.11975/j.iss....
21.
Liu, G.L., Yin, G., Kurban, A., Aishan, T., You, H.L., 2016. Spatiotemporal dynamics of land cover and their impacts on potential dust source regions in the Tarim Basin, NW China. Environ. Earth Sci. 75, 1471-1477.
https://doi.org/10.1007/s12665....
22.
Liu, J.Y., Jiang, L., Yin, L.H., Hu, H.L., Wang, L.L., Sun, J.G., 2023. Analysis of soil nutrient characteristics and main controlling factors in the oasis area of the Northeast Edge of the Tarim Basin. Northwest Geol. 56, 141-152.
https://doi.org/10.12401/j.nwg....
23.
Liu, J.Y., Li, R.Y., Liang, Y.C., Liu, L., Yin, F., Tang, S., et al., 2024a. Prediction of cadmium content in oasis soils on the eastern edge of the tarim basin based on feature selection and machine learning, and health risk assessment. Environ. Sci. 45, 4802-4811.
https://doi.org/10.13227/j.hjk....
24.
Liu, J.Y., Yin, F., Liu, L., 2024b. Ecological stoichiometric characteristics and driving factors of soil in desert oasis areas. China Environ. Sci. 44, 300-309.
https://doi.org/10.3969/j.issn....
25.
Liu, D., Sun, J.Q., Yu, Z.B., 2024. Multi-layer soil moisture inversion based on machine learning. J. Hohai Univ. Nat. Sci. 52, 7-14.
https://doi.org/10.3876/j.issn....
26.
Ma, R., Li, X.Q., Tie, C.X., Hou, Q.Y., Liu, L.F., 2024. Distribution characteristics and influencing factors of soil organic carbon under different land use types in the Loess Hilly and Gully Region. J. Agric. Resour. Environ. 23, 1-12.
https://doi.org/10.13254/j.jar....
27.
Ma, Z.M., Zhang, M.L., Liu, X.Y., 2024. Estimation of soil organic carbon content in Gannan Grassland Based on SSA-Optimized CatBoost. Environ. Sci. 21, 1-17.
https://doi.org/10.13227/j.hjk....
28.
Mackessy, F., McCarthy, E., Broderick, E., O’Donnell, B., Quille, P., 2024. Investigating the accuracy and comparability of various lime prediction methods for Irish grassland mineral soils. Soil Use Manag. 40, 1-12.
https://doi.org/10.1111/SUM.13....
29.
Neupane A., Lazicki P., Mayes M.A., Lee J.,·Jagadamma S., 2022. The use of stable carbon isotopes to decipher global change effects on soil organic carbon: present status, limitations, and future prospect. Biogeochemistry 160, 315-354.
https://doi.org/10.1007/S10533....
30.
Noppol, A., Sukanya, S., Praeploy, K., Monthira, Y., Ryusuke, H., 2023. Variations of soil properties and soil surface loss after fire in rotational shifting cultivation in Northern Thailand. Front Environ. Sci. 11, 1213181.
https://doi.org/10.3389/fenvs.....
31.
Noppol, A., Sukanya, S., Ryusuke, H., 2021. Impact of burning on soil organic carbon of maize-upland rice system in Mae Chaem Basin of Northern Thailand. Geoderma 392, 115002.
https://doi.org/10.1016/j.geod....
32.
Oukhattar, M., Gadal, S., Robert, Y., Saby, N., Houmma, H.I., Keller C., 2025. Variability analysis of soil organic carbon content across land use types and its digital mapping using machine learning and deep learning algorithms. Environ. Monit. Assess. 197, 535-535.
https://doi.org/10.1007/S10661....
33.
Petersson, T., Antoniella, G., Perugini, L., Chiriacò, V.M., Chiti, T., 2025. Carbon farming practices for European cropland: A review on the effect on soil organic carbon. Soil Till. Res. 247, 106353-106353.
https://doi.org/10.1016/J.STIL....
34.
Parajuli, B., Lamichhane, N., Monokrousos, N., Pokhrel, P.C., Yadav, P.K.R., 2024. Influence of land-use practices on soil organic carbon and microbial biomass in coffee and orange agroecosystems. Land 13, 2076-2076.
https://doi.org/10.3390/LAND13....
35.
Paramesha, V., Kumar, P., Francaviglia, R., Nath, A.J., Mishra, G., Kumar, R.M., et al., 2024. Evaluating land use and climate change effects on soil organic carbon. A simulation study in coconut and pineapple systems in west coast India. Catena 248, 108587.
https://doi.org/10.1016/J.CATE....
36.
Qin, Z.L., Yang, X.M., Song, Z.L., Wu, S.C., Fang, X.H., Peng, B., 2020. The Impact of Parent Material and Land Use on the Chemical Composition of Soil Organic Carbon. Chin. J. Soil Sci. 51, 621-629.
https://doi.org/10.19336/j.cnk....
37.
Qin, D.R., Huang, Y.M., Huang, Q., Xu, F.J., Shen, J.K., 2024. Contribution of microbial residual carbon in different soil layers of typical forest-grassland on the loess plateau to soil organic carbon components and its influencing factors. Environ. Sci. 44, 1-16.
https://doi.org/10.13227/j.hjk....
38.
Sanleandro, P.M., García, A.M.G., Bernardeau, A.B., Vázquez, J.M.G., Linares, M.A.A., 2023. Influence of the type and use of soil on the distribution of organic carbon and other soil properties in a sustainable and resilient agropolitan system. Forests 14, 2063.
https://doi.org/10.3390/F14061....
39.
Shen, Z., Han, T.F., Huang, J., Li, J.W., Daba, N.A., Gilbert, N., et al., 2024. Soil organic carbon regulation by pH in acidic red soil subjected to long-term liming and straw incorporation. J. Environ. Manag. 367, 122063.
https://doi.org/10.1016/J.JENV....
40.
Spotorno, S., Gobin, A., Vanongeval, F., Borghi, A.D., Gallo, M., 2024. Carbon Farming practices assessment: Modelling spatial changes of soil organic carbon in Flanders, Belgium. Sci. Total Environ. 922, 171267.
https://doi.org/10.1016/J.SCIT....
41.
Szostek, M., Szpunar-Krok, E., Pawlak, R., Stanek-Tarkowska, J., Ilek, A., 2022. Effect of different tillage systems on soil organic carbon and enzymatic activity. Agronomy 12, 208-208.
https://doi.org/10.3390/agrono....
42.
Tian, L.J., Shao, G.C., Gao, Y., Song, E.Z., Lu, J., 2024. Effects of biochar on soil organic carbon in relation to soil nutrient contents, climate zones and cropping systems: A Chinese meta-analysis. Land 13, 1608.
https://doi.org/10.3390/LAND13....
43.
Wang, L., Fan, H.B., Wu, Z.H., Lv, T.G., Tan, Y.Z., 2024. Spatial patterns and influencing factors of organic carbon content in cultivated layer soils in the Eastern Sichuan Hilly area. Trans. Chin. Soc. Agric. Eng. 40, 169-178.
https://doi.org/11.2047.S.2024....
44.
Wang, Y.P., Li, R.F., Yan, W.M., Han, X.Y., Liu, W.Z., Li, Z., 2024. Variations in soil organic carbon after farmland conversion to apple orchard. Agronomy 14, 963.
https://doi.org/10.3390/agrono....
45.
Wang, Z., Kumar, J., Leff, S.R.W., Todd‐Brown, K., Mishra, U., Sihi, D., 2024. Upscaling soil organic carbon measurements at the continental scale using multivariate clustering analysis and machine learning. J. Geophys. Res. Biogeosci. 129, e2024JG018359.
https://doi.org/10.1029/2023JG....
46.
Xia, S., Song, Z.L., Yu, B.B., Fan, Y.R., Tony, V., Guo, L.D., et al., 2024. Land use changes and edaphic properties control contents and isotopic compositions of soil organic carbon and nitrogen in wetlands. Catena 241, 108031.
https://doi.org/10.1016/J.CATE....
47.
Xiong, K., Jiang, X.Y., Huang, S.Q., Guan, S., Zou, X.B., Chen, C.T., et al., 2024. Variations in iron-bound organic carbon in soils along an altitude gradient and influencing factors in a subtropical mountain ecosystem of southern China. J. Soil Sediment. 24, 3180-3194.
https://doi.org/10.1007/S11368....
48.
Yang, Q., Qu, K.M., Yang, S., Sun, Y., Zhang, Y., Zhou, M.Y., 2021. Environmental factors affecting regional differences and decadal variations in the buried flux of marine organic carbon in eastern shelf sea areas of China. Acta Oceanol. Sin. 40, 26-34.
https://doi.org/10.1007/S13131....
49.
Yang, X., Bao, Y.W., Li, B.W., Wang, R.X., Sun, C., Ma, D.H., et al., 2024. Effects of fertilization applications on soil aggregate organic carbon content and assessment of their influencing factors: A meta-analysis. Catena 242, 108135.
https://doi.org/10.1016/J.CATE....
50.
Yin, J., Xue, S.S., Xu, X.T., Yang, G.S., Zhang, W., Ma, S.Z., 2012. Research on the changes in land use landscape patterns in the agricultural reclamation area of the Tarim Basin, Xinjiang over the Past 35 Years. Chinese J. Soil Water Conservation 7, 54-56.
https://doi.org/10.14123/j.cnk....
51.
Zhang, J.H., Zhu, L.Q., Li, G.D., Zhao, F., Qin, J.T., 2021. Spatial characteristics of soil carbon and nitrogen in the transitional zone between Northern and Southern China and the boundary between warm temperate and subtropical zones. Acta Geographica Sinica 76, 2269-2282.
https://doi.org/10.11821/dlxb2....
52.
Zhang, X.S., He, B., Sabri, S.M.M., Mohammed, A., Vladimirovich, U.D., 2022. Soil liquefaction prediction based on bayesian optimization and support vector machines. Sustainability 14, 11944.
https://doi.org/11944.10.3390/....
53.
Zhang, H.T., Wang, J.H., Zhang, Y.C., Qian, H.Y., Xie, Z.Y., Hu, Y.F., et al., 2023. Soil organic carbon dynamics and influencing factors in the Zoige Alpine Wetland from the 1980s to 2020 based on a random forest model. Land 12, 1973.
https://doi.org/10.3390/LAND12....
54.
Zong, M.M., Abalos, D., Chen, J., Liang, Z., Li, Y., Elsgaard, L., et al., 2025. Ten-year effects of perennial cropping systems on soil organic carbon stock and stability in sandy soils: Mechanisms and biochemical drivers. Eur. J. Agron. 168, 127639.
https://doi.org/10.1016/J.EJA.....