RESEARCH PAPER
Comprehensive evaluation of Lagenaria siceraria and Cucurbita species seeds: proximate composition, antioxidant potential, lipid profiling, and oil properties
More details
Hide details
1
Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 83000, Morocco
2
Geo-Bio-Environmental Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 83000, Morocco
3
University of Studies "Mediterranea" of Reggio Calabria, Department AGRARIA, 89124 Reggio Calabria, Italy
4
International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-institute, Rabat 10090, Morocco
5
Laboratory of Biology, Ecology, and Health, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93002, Morocco
Final revision date: 2025-05-17
Acceptance date: 2025-06-16
Publication date: 2025-08-27
Corresponding author
Angelo Maria Giuffrè
University of Studies "Mediterranea" of Reggio Calabria, Department AGRARIA, 89124 Reggio Calabria, Italy
Said Gharby
Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
Int. Agrophys. 2025, 39(4): 457-474
Authors’ contributions
Abdelghani Ait Nouisse: Resources, Formal analysis, Writing – Original Draft
Rachid Belmallam: Resources, Formal analysis, Data curation
Hasna Ait Bouzid: Resources, Formal analysis, Writing – Original Draft
Mohamed Ibourki: Conceptualization, Methodology, Software
Krishna Devkota: Validation, Supervision, Writing- Original draft preparation
Khalid Majourhat: Visualization, Investigation, Writing – review and editing.
El Hassan Sakar: Supervision, Visualization, Validation, Writing – review & editing
Angelo Maria Giuffrè: Software, Resources, Writing – review & editing, Visualization, Project administration. Said Gharby: Writing – review & editing, Validation, Supervision, Conceptualization and final approval.
Data availability statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.
HIGHLIGHTS
- Cucurbitaceae seeds show high nutritional and industrial potential
- C. moschata var. “Hamra” has the highest oil content
- C. moschata var. “Slaouiya” leads in protein and DPPH activity
- L. siceraria seeds are rich in potassium and magnesium
- Linoleic acid was the dominant PUFA in most Cucurbitaceae seed oils
KEYWORDS
TOPICS
ABSTRACT
Seeds from the Cucurbitaceae family are generally considered waste. This study focuses on the seeds of four species: Lagenaria siceraria and three species of Cucurbita spp., evaluating their nutritional composition, mineral content, bioactive properties, and oil characteristics. C. moschata var. “Slaouiya” exhibited the highest protein content (37.12 ± 0.01 g 100 g-1), while C. moschata var. “Hamra” had the highest oil content (43.60 ± 0.37 g 100 g-1). Mineral analysis revealed elevated potassium and magnesium levels in C. moschata var. “Slaouiya” (875.59 ± 28.87 mg g 100 g-1 K and 435.89 ± 3.36 mg g 100 g-1 Mg). L. siceraria recorded the highest TPC (5.71 ± 0.12 mg GAE g-1) and TFC (16.06 ± 0.27 mg QE g-1). Linoleic acid (C18:2) was the most abundant fatty acid, particularly in L. siceraria (70.73 ± 0.10%), which also had the highest content of PUFAs (70.89 ± 0.11%). In terms of oxidative stability and nutritional indices, L. siceraria exhibited the highest Cox value (7.40 ± 0.01) and OS (3206.81 ± 5.50). C. moschata var. “Slaouiya” had the lowest atherogenic indices (AI) (0.23) and thrombogenic indices (TI) (0.09), suggesting potential cardiovascular benefits. These findings highlight the exceptional potential of these seeds, which could serve as a basis for innovations in the food, cosmetics, and pharmaceutical industries.
CONFLICT OF INTEREST
The authors affirm that they have no conflicts of interest.
REFERENCES (89)
1.
Abd El-Rahman, A., Mahmoud, A.Z.A., Sayed, A.A., Abd El Latif, M.A., 2022. Physiochemical properties and phytochemical characteristics of bottle gourd (Lagenaria siceraria) Seed Oil. Egypt. J. Chem. 65, 269-277.
2.
Abdel-Razek, A.G., Badr, A.N., Alharthi, S.S., Selim, K.A., 2021. Efficacy of bottle gourd seeds’ extracts in chemical hazard reduction secreted as toxigenic Fungi Metabolites. Toxins 13, 789.
https://doi.org/10.3390/toxins....
3.
Abou-Zeid, S.M., AbuBakr, H.O., Mohamed, M.A., El-Bahrawy, A., 2018. Ameliorative effect of pumpkin seed oil against emamectin induced toxicity in mice. Biomed. Pharmacother. 98, 242-251.
https://doi.org/10.1016/j.biop....
4.
Abril, D., Mirabal-Gallardo, Y., González, A., Marican, A., Durán-Lara, E.F., Silva Santos, L., et al., 2019. Comparison of the oxidative stability and antioxidant activity of extra-virgin olive oil and oils extracted from seeds of Colliguaya integerrima and Cynara cardunculus under normal conditions and after thermal treatment. Antioxidants 8, 470.
https://doi.org/10.3390/antiox....
5.
Ait Bouzid, H., Nouisse, A., Hallouch, O., Asbbane, A., Hicham, H., Jamal, K., et al., 2024. Amlou inspired spread: Formulation and characterization of new spread based on Ziziphus lotus L. fruit, argan oil, and honey. Heliyon 10, 34002.
https://doi.org/10.1016/j.heli....
6.
Ait Bouzid, H., Sakar, E.H., Bijla, L., Ibourki, M., Zeroual, A., Gagour, J., et al., 2022. Physical fruit traits, proximate composition, antioxidant activity, and profiling of fatty acids and minerals of wild Jujube (Ziziphus lotus L. (Desf.)) fruits from eleven moroccan origins. J. Food Qual. 2022, 1-15.
https://doi.org/10.1155/2022/9....
7.
Ajibe, Y.Y., Ubana, M.A., Bamidele, T.O., 2022. Comparative Chemical Evaluation of Three Species of Melon (Cucumis melo, Cucurbita moschata and Cucumeropsis mannii) seeds. Asian J. Biochem. Genet. Mol. Biol. 11, 48-57.
https://doi.org/10.9734/ajbgmb....
8.
Al-Hwaiti, M.S., Alsbou, E.M., Abu Sheikha, G., Bakchiche, B., Pham, T.H., Thomas, R.H., et al., 2021. Evaluation of the anticancer activity and fatty acids composition of “Handal” (Citrullus colocynthis L.) seed oil, a desert plant from south Jordan. Food Sci. Nutr. 9, 282-289.
https://doi.org/10.1002/fsn3.1....
9.
Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R., Koirala, N., 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 8, 96.
https://doi.org/10.3390/plants....
10.
Asbbane, A., Hallouch, O., Oubannin, S., Gagour, J., Ait Bouzid, H., Gharby, S., 2024. Lipid oxidation of argan compared to virgin olive, and cactus oils: Rancimat test for kinetic and thermodynamic analysis. Chem. Pap.
https://doi.org/10.1007/s11696....
11.
Athanasiadis, V., Chatzimitakos, T., Kotsou, K., Kalompatsios, D., Bozinou, E., Lalas, S.I., 2024. Utilization of blackthorn plums (Prunus spinosa) and sweet cherry (Prunus avium) kernel oil: assessment of chemical composition, antioxidant activity, and oxidative stability. Biomass 4, 49-64.
https://doi.org/10.3390/biomas....
12.
Badmus, J.A., Oyelami, K.O., Adedeji, A.L., Adedosu, O.T., Bolarinwa, I.F., Marnewick, J.L., 2021. Comparative study of physicochemical properties, fatty acid composition, antioxidant and toxicological potential of Citrullus lanatus and Citrullus colocynthis seeds oils. South Afr. J. Bot. 142, 156-164.
https://doi.org/10.1016/j.sajb....
13.
Banaś, J., Maciejaszek, I., Surówka, K., Zawiślak, A., 2020. Temperature-induced storage quality changes in pumpkin and safflower cold-pressed oils. J. Food Meas. Charact. 14, 1213-1222.
https://doi.org/10.1007/s11694....
14.
Belhoussaine, O., El Kourchi, C., Amakhmakh, M., Ullah, R., Iqbal, Z., Goh, K.W., et al., 2024. Oxidative stability and nutritional quality of stored Linum usitatissmium L. and Argania spinosa L., oil blends: Chemical compositions, properties and nutritional value. Food Chem. X 101680.
https://doi.org/10.1016/j.foch....
15.
Bijla, L., Ait Bouzid, H., Ibourki, M., Ainane, A., Rabha, A., Laknifli, Tarik, A., et al., 2021. Antioxidant activity, chemical composition and morphological properties of green and roasted coffee beans as affected by the microwave roasting method. Pharmacologyonline 2, 546-555.
16.
Bireche, M., Boulanouar, B., Gherib, A., Gil-Izquierdo, A., Domínguez-Perles, R., Ghareeb, M.A., 2021. Fatty acid and amino acid composition of Citrullus colocynthis seeds growing in Algeria. Egypt. J. Chem. 64, 4727-4737.
https://doi.org/10.21608/ejche....
17.
Bouazzaoui, N., Mulengi, J.K., 2018. Fatty acids and mineral composition of melon (Cucumis melo) and pumpkin (Cucurbita moschata) seeds. J. Herbs Spices Med. Plants 24, 315-322.
https://doi.org/10.1080/104964....
18.
Boujemaa, I., El Bernoussi, S., Lakhlifi El Idrissi, Z., El Idrissi, Y., El Guezzane, C., Lee, L.-H., et al., 2024. The impact of geographical location on the nutritional quality, chemical composition, and antioxidant activity of Cucurbita maxima (rouge vif d’Etampes) seed oil. Biochem. Syst. Ecol. 115, 104835.
https://doi.org/10.1016/j.bse.....
19.
Cais-Sokolińska, D., Teichert, J., Gawałek, J., 2023. Foaming and other functional properties of freeze-dried Mare’s Milk. Foods 12, 2274.
https://doi.org/10.3390/foods1....
20.
Cecchi, T., Passamonti, P., Alfei, B., Cecchi, P., 2011. Monovarietal extra virgin olive oils from the Marche Region, Italy: Analytical and sensory characterization. Int. J. Food Prop. 14, 483-495.
https://doi.org/10.1080/109429....
21.
Cheng, X., Qin, M., Chen, R., Jia, Y., Zhu, Q., Chen, G., et al., 2023. Citrullus colocynthis (L.) Schrad.: A promising pharmaceutical resource for multiple diseases. Molecules 28.
https://doi.org/10.3390/molecu....
22.
Dal Bosco, A., Cartoni Mancinelli, A., Vaudo, G., Cavallo, M., Castellini, C., Mattioli, S., 2022. Indexing of fatty acids in poultry meat for its characterization in healthy human nutrition: a comprehensive application of the scientific literature and new proposals. Nutrients 14, 3110.
https://doi.org/10.3390/nu1415....
23.
Dubey, P., Thakur, V., Chattopadhyay, M., 2020. Role of Minerals and trace elements in diabetes and insulin resistance. Nutrients 12, 1864.
https://doi.org/10.3390/nu1206....
24.
Fokou, E., Achu, M.B., Kansci, G., Ponka R., Fotso M., Tchiegang, C., et al., 2009. Chemical properties of some Cucurbitaceae oils from Cameroon. Pak. J. Nutr. 8.
https://doi.org/10.3923/pjn.20....
25.
Gade, S.R., Meghwal, M., Prabhakar, P.K., Giuffrè, A.M., 2022. A comparative study on the nutritional, antioxidant, thermal, morphological and diffraction properties of selected cucurbit seeds. Agronomy 12, 2242.
https://doi.org/10.3390/agrono....
26.
Gagour, J., Hallouch, O., Asbbane, A., Laknifli, A., Sakar, E.H., Majourhat, K., et al., 2024. physicochemical characterization of ‘Moroccan Picholine’ Olive (Olea europaea L.) oil produced in Southern Morocco using multivariate statistical analysis. Analytica 5, 119-138.
https://doi.org/10.3390/analyt....
27.
Gagour, J., Nid Ahmed, M., Ait Bouzid, H., Oubannin, S., Bijla, L., Ibourki, M., et al., 2022. Proximate composition, physicochemical, and lipids profiling and elemental profiling of rapeseed (Brassica napus L.) and sunflower (Helianthus annuus L.) grown in Morocco. Evid. Based Complement. Alternat. Med. 1-12.
https://doi.org/10.1155/2022/3....
28.
Gebremeskal, Y.H., Nadtochii, L.A., Eremeeva, N.B., Mensah, E.O., Kazydub, N.G., Soliman, T.N., et al., 2024. Comparative analysis of the nutritional composition, phytochemicals, and antioxidant activity of chia seeds, flax seeds, and psyllium husk. Food Biosci. 61, 104889.
https://doi.org/10.1016/j.fbio....
29.
Gharby, S., Ravi, H.K., Guillaume, D., Vian, M.A., Chemat, F., Charrouf, Z., 2020. 2-methyloxolane as alternative solvent for lipid extraction and its effect on the cactus (Opuntia ficus-indica L.) seed oil fractions. OCL 27, 27.
https://doi.org/10.1051/ocl/20....
30.
Hachimi, F.E., Antari, A.E., Boujnah, M., Bendrisse, A., Alfaiz, C., 2015. Comparison of oils seed and fatty acid content of various Moroccan populations of jujube, grenadier and prickly pear. JMES 6(5), 1488-1502.
31.
Hagos, M., Yaya, E.E., Chandravanshi, B.S., Redi-Abshiro, M., 2023. Determination of fatty acids composition by GC-MS and physicochemical parameters of pumpkin (Cucurbita maxima) seed oil cultivated in Ethiopia. Bull. Chem. Soc. Ethiop. 37, 565-577.
https://doi.org/10.4314/bcse.v....
32.
Hajib, A., Nounah, I., Harhar, H., Gharby, S., Kartah, B., Matthäus, B., et al., 2021. Oil content, lipid profiling and oxidative stability of “Sefri” Moroccan pomegranate (Punica granatum L.) seed oil. OCL 28, 5.
https://doi.org/10.1051/ocl/20....
33.
Hosen, M., Rafii, M.Y., Mazlan, N., Jusoh, M., Oladosu, Y., Chowdhury, M.F.N., et al., 2021. Pumpkin (Cucurbita spp.): A crop to mitigate food and nutritional challenges. Horticulturae 7, 352.
https://doi.org/10.3390/hortic....
34.
Hussain, A., Kausar, T., Din, A., Murtaza, A., Jamil, M.A., Noreen, S., et al., 2021. Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin (Cucurbita maxima). J. Food Process. Preserv. 45, e15542.
https://doi.org/10.1111/jfpp.1....
35.
Ibourki, M., Azouguigh, F., Jadouali, S.M., Sakar, E.H., Bijla, L., Majourhat, K., et al., 2021. Physical fruit traits, nutritional composition, and seed oil fatty acids profiling in the main date palm (Phoenix dactylifera L.) varieties grown in Morocco. J. Food Qual. 2021, 1-12.
https://doi.org/10.1155/2021/5....
36.
Indrianingsih, A.W., Rosyida, V.T., Apriyana, W., Hayati, S.N., Nisa, K., Darsih, C., et al., 2019. Comparisons of antioxidant activities of two varieties of pumpkin (Cucurbita moschata and Cucurbita maxima) extracts. IOP Conf. Ser. Earth Environ. Sci. 251, 012021.
https://doi.org/10.1088/1755-1....
37.
Ismaili, S.A., Marmouzi, I., Sayah, K., Harhar, H., Faouzi, M.E.A., Gharby, S., et al., 2016. Chemical analysis and anti-oxidation activities of the Moroccan milk thistle. Moroc. J. Chem. 4(3), 695-702.
38.
ISO 660, 2020. Animal and vegetable fats and oils – Determination of acid value and acidity.
39.
ISO 3960, 2017. Animal and vegetable fats and oils - Determination of peroxide value – Iodometric (visual) endpoint determination.
40.
ISO 6886, 2016. Animal and vegetable fats and oils – Determination of oxidative stability (accelerated oxidation test).
41.
ISO 12966-2, 2017. Animal and vegetable fats and oils - Gas chromatography of fatty acid methyl esters.
42.
Jahan, F., Islam, M.B., Moulick, S.P., Bashera, M.A., Hasan, M.S., Tasnim, N., et al., 2023. Nutritional characterization and antioxidant properties of various edible portions of Cucurbita maxima: A potential source of nutraceuticals. Heliyon 9.
https://doi.org/10.1016/j.heli....
43.
Karrar, E., Sheth, S., Navicha, W.B., Wei, W., Hassanin, H., Abdalla, M., Wang, X., 2019. A potential new source: Nutritional and antioxidant properties of edible oils from cucurbit seeds and their impact on human health. J. Food Biochem. 43, e12733.
https://doi.org/10.1111/jfbc.1....
44.
Kim, M.Y., Kim, E.J., Kim, Y.-N., Choi, C., Lee, B.-H., 2012. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr. Res. Pract. 6, 21-27.
https://doi.org/10.4162/nrp.20....
45.
Konadu, M., Assilidjoe, E., Pedavoah, M., Quansah, D., 2021. Evaluation of proximate composition and selected physico-chemical properties of butternut squash (Cucurbita moschata). Int. J. Food Sci. 4, 1-15.
https://doi.org/10.47604/ijf.1....
46.
Kumar, M., Tomar, M., Potkule, J., Reetu, Punia, S., Dhakane-Lad, J., et al., 2022. Functional characterization of plant-based protein to determine its quality for food applications. Food Hydrocoll. 123, 106986.
https://doi.org/10.1016/j.food....
47.
Lakhlifi El Idrissi, Z., El Guezzane, C., Boujemaa, I., El Bernoussi, S., Sifou, A., El Moudden, H., et al., 2024. Blending cold-pressed peanut oil with omega-3 fatty acids from walnut oil: Analytical profiling and prediction of nutritive attributes and oxidative stability. Food Chem. X 22, 101453.
https://doi.org/10.1016/j.foch....
48.
Lau, K.Q., Sabran, M.R., Shafie, S.R., 2021. Utilization of vegetable and fruit by-products as functional ingredient and food. Front. Nutr. 8.
https://doi.org/10.3389/fnut.2....
49.
Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., et al., 2016. An Overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21, 1374.
https://doi.org/10.3390/molecu....
50.
Lin, Y.-T., Lin, H.-R., Yang, C.-S., Liaw, C.-C., Sung, P.-J., Kuo, Y.-H., Cheng, M.-J., Chen, J.-J., 2022. Antioxidant and anti-α-glucosidase activities of various solvent extracts and major bioactive components from the fruits of Crataegus pinnatifida. Antioxidants 11, 320.
https://doi.org/10.3390/antiox....
51.
Mashilo, J., Shimelis, H., Odindo, A., 2017. Phenotypic and genotypic characterization of bottle gourd [Lagenaria siceraria (Molina) Standl.] and implications for breeding: A Review. Sci. Hortic. 222, 136-144.
https://doi.org/10.1016/j.scie....
52.
Medeiros, E., Queiroga, R., Oliveira, M., Medeiros, A., Sabedot, M., Bomfim, M., et al., 2014. Fatty acid profile of cheese from dairy goats fed a diet enriched with castor, sesame and faveleira vegetable oils. Mol. Basel Switz. 19, 992-1003.
https://doi.org/10.3390/molecu....
53.
Montesano, D., Blasi, F., Simonetti, M.S., Santini, A., Cossignani, L., 2018. Chemical and nutritional characterization of seed oil from Cucurbita maxima L. (var. Berrettina) pumpkin. Foods 7, 30.
https://doi.org/10.3390/foods7....
54.
M’Rabet, Y., Hosni, K., Khwaldia, K., 2023. Effects of oleuropein-rich olive leaf extract on the oxidative stability of refined sunflower oil. Grasas Aceites 74, e505-e505.
https://doi.org/10.3989/gya.06....
55.
Nounah, I., Hajib, A., Harhar, H., Madani, N.E., Gharby, S., Guillaume, D., et al., 2017. Chemical composition and antioxidant activity of Lawsonia inermis seed extracts from Morocco. Nat. Prod. Commun. 12, 1934578X1701200405.
https://doi.org/10.1177/193457....
56.
Nwachoko, N., Akuru, U., Inyingi, A., Reward, M., Odinga, T.-B., Chukwudi, O., 2023. Physicochemical properties and fatty acid composition of freshly prepared palm oil. Afr. J. Biochem. Res. 17, 9-14.
https://doi.org/10.5897/AJBR20....
57.
Nyam, K., Tan, C., Lai, O.M., Long, K., Man, Y.B., 2009. Physicochemical properties and Bioactive compounds of Selected seed oils. LWT – Food Sci. Technol. 42, 1396-1403.
https://doi.org/10.1016/j.lwt.....
58.
Ogunbusola, E.M., 2018. Nutritional and antinutritional composition of calabash and bottle gourd seed flours (var Lagenaria siceraria). J. Culin. Sci. Technol. 16, 326-335.
https://doi.org/10.1080/154280....
59.
Orsavova, J., Misurcova, L., Ambrozova, J.V., Vicha, R., Mlcek, J., 2015. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 16, 12871-12890.
https://doi.org/10.3390/ijms16....
60.
Oubannin, S., Bijla, L., Gagour, J., Hajir, J., Aabd, N.A., Sakar, E.H., et al., 2022. A comparative evaluation of proximate composition, elemental profiling and oil physicochemical properties of black cumin (Nigella sativa L.) seeds and argan (Argania spinosa L. skeels) kernels. Chem. Data Collect. 41, 100920.
https://doi.org/10.1016/j.cdc.....
61.
Oucif, H., Rahma, S., Boukortt, F., Mehidi, S., Abi-Ayad, S.-M., 2017. Comparison of in vitro antioxidant activity of some selected seaweeds from Algerian West Coast. Afr. J. Biotechnol. 16, 1474-1480.
62.
Paszczyk, B., Czarnowska-Kujawska, M., 2022. Fatty acid profile, conjugated linoleic acid content, and lipid quality indices in selected yogurts available on the Polish market. Animals 12, 96.
https://doi.org/10.3390/ani120....
63.
Piccolella, S., Bianco, A., Crescente, G., Santillo, A., Chieffi Baccari, G., Pacifico, S., 2019. Recovering Cucurbita pepo cv. ‘Lungo Fiorentino’ wastes: UHPLC-HRMS/MS metabolic profile, the basis for establishing their nutra- and cosmeceutical valorisation. Molecules 24, 1479.
https://doi.org/10.3390/molecu....
64.
Priori, D., Valduga, E., Villela, J.C.B., Mistura, C.C., Vizzotto, M., Valgas, R.A., et al., 2016. Characterization of bioactive compounds, antioxidant activity and minerals in landraces of pumpkin (Cucurbita moschata) cultivated in Southern Brazil. Food Sci. Technol. 37, 33-40.
https://doi.org/10.1590/1678-4....
65.
Rezanejad, R., Heidarieh, M., Ojagh, S.M., Rezaei, M., Raeisi, M., Alishahi, A., 2020. Values of antioxidant activities (ABTS and DPPH) and ferric reducing and chelating powers of gamma-irradiated rosemary extract. Radiochim. Acta 108, 477-482.
https://doi.org/10.1515/ract-2....
66.
Rezig, L., Chouaibi, M., Meddeb, W., Msaada, K., Hamdi, S., 2019. Chemical composition and bioactive compounds of Cucurbitaceae seeds: Potential sources for new trends of plant oils. Process Saf. Environ. Prot. 127, 73-81.
https://doi.org/10.1016/j.psep....
67.
Rezig, L., Gharsallah, K., Mahfoudhi, N., 2022. Bioactive compounds of Cucurbitaceae seed oils as nutraceuticals and health- promoting substances. Handbook of Research on Advanced Phytochemicals and Plant-Based Drug Discovery (Ed. Ajeet Singh), IGI Global Scientific Publishing 292-313.
https://doi.org/10.4018/978-1-....
68.
Rokosik, E., Dwiecki, K., Siger, A., 2020. Nutritional quality and phytochemical contents of cold pressed oil obtained from chia, milk thistle, nigella, and white and black poppy seeds. Grasas Aceites 71.
https://doi.org/10.3989/gya.06....
69.
Rolnik, A., Olas, B., 2020. Vegetables from the Cucurbitaceae family and their products: Positive effect on human health. Nutrition 78, 110788.
https://doi.org/10.1016/j.nut.....
70.
Roopan, S.M., Devi Rajeswari, V., Kalpana, V.N., Elango, G., 2016. Biotechnology and pharmacological evaluation of Indian vegetable crop Lagenaria siceraria: an overview. Appl. Microbiol. Biotechnol. 100, 1153-1162.
https://doi.org/10.1007/s00253....
71.
Saeed, M., Khan, M.S., Amir, K., Bi, J.B., Asif, M., Madni, A., et al., 2022. Lagenaria siceraria fruit: A review of its phytochemistry, pharmacology, and promising traditional uses. Front. Nutr. 9.
https://doi.org/10.3389/fnut.2....
72.
Salehi, B., Quispe, C., Sharifi‐Rad, J., Giri, L., Suyal, R., Jugran, A.K., et al., 2021. Antioxidant potential of family Cucurbitaceae with special emphasis on Cucurbita genus: A key to alleviate oxidative stress‐mediated disorders. Phytother. Res. 35, 3533-3557.
https://doi.org/10.1002/ptr.70....
73.
Singh, A., Kumar, V., 2020. Cultivars effect on the physical characteristics of pumpkin (Cucurbita moschata Duch.) seeds and kernels. J. Inst. Eng. India Ser. A 101.
https://doi.org/10.1007/s40030....
74.
Singh, A., Kumar, V., 2022. Nutritional, phytochemical, and antimicrobial attributes of seeds and kernels of different pumpkin cultivars. Food Front. 3, 182-193.
https://doi.org/10.1002/fft2.1....
75.
Singh, A., Kumar, V., 2023. Phyto-chemical and bioactive compounds of pumpkin seed oil as affected by different extraction methods. Food Chem. Adv. 2, 100211.
https://doi.org/10.1016/j.foch....
76.
Singh, A., Kumar, V., 2024. Pumpkin seeds as nutraceutical and functional food ingredient for future: A review. Grain Oil Sci. Technol. 7, 12-29.
https://doi.org/10.1016/j.gaos....
77.
Stefanache, A., Lungu, I.-I., Butnariu, I.-A., Calin, G., Gutu, C., Marcu, C., et al., 2023. Understanding how minerals contribute to optimal immune function. J. Immunol. Res. 2023, 3355733.
https://doi.org/10.1155/2023/3....
78.
Sun, W., Shahrajabian, M.H., 2023. Therapeutic Potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules 28, 1845.
https://doi.org/10.3390/molecu....
79.
Symoniuk, E., Wroniak, M., Napiórkowska, K., Brzezińska, R., Ratusz, K., 2022. Oxidative stability and antioxidant activity of selected cold-pressed oils and oils mixtures. Foods 11, 1597.
https://doi.org/10.3390/foods1....
80.
Szpunar-Krok, E., Wondołowska-Grabowska, A., 2022. Quality evaluation indices for soybean oil in relation to cultivar, application of N fertiliser and seed inoculation with Bradyrhizobium japonicum. Foods 11, 762.
https://doi.org/10.3390/foods1....
81.
Ujm, I., Sn, U., 2020. Physiochemical properties, fatty acid composition and characterization of melon seed oil (Citrullus colocynthis). Pharmacogn. Phytochem. 9(4), 1219-1227.
82.
Veronezi, C.M., Jorge, N., 2012. Bioactive compounds in lipid fractions of pumpkin (Cucurbita sp.) seeds for use in food. J. Food Sci. 77, C653-C657.
https://doi.org/10.1111/j.1750....
83.
Wang, Y., Yang, C., Wang, X., Zhang, S., Wang, S., Wu, D., et al., 2024. Determination of free fatty acids in edible oil based on hollow Mesoporous silica nanoparticles. Food Chem. 443, 138561.
https://doi.org/10.1016/j.food....
84.
Weyh, C., Krüger, K., Peeling, P., Castell, L., 2022. The role of minerals in the optimal functioning of the immune system. Nutrients 14, 644.
https://doi.org/10.3390/nu1403....
85.
Winiarska-Mieczan, A., Kwiecień, M., Purwin, C., Jachimowicz-Rogowska, K., Borsuk-Stanulewicz, M., Pogorzelska-Przybyłek, P., et al., 2024. Fatty acid profile and dietary value of thigh meat of broiler chickens receiving mineral or organic forms of Zn. Animals 14, 1156.
https://doi.org/10.3390/ani140....
86.
Yang, R., Zhang, L., Li, P., Yu, L., Mao, J., Wang, X., et al., 2018. A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends Food Sci. Technol. 74, 26-32.
https://doi.org/10.1016/j.tifs....
87.
Yoshime, L.T., Melo, I.L.P. de, Sattler, J.A.G., Torres, R.P., Mancini-Filho, J., 2018. Bioactive compounds and the antioxidant capacities of seed oils from pomegranate (Punica granatum L.) and bitter gourd (Momordica charantia L.). Food Sci. Technol. 39, 571-580.
https://doi.org/10.1590/fst.23....
88.
Zahoor, M., Ikram, M., Nazir, N., Naz, S., Batiha, G.E.-S., Kamran, A.W., et al., 2021. A comprehensive review on the medicinal importance; biological and therapeutic efficacy of Lagenaria siceraria (Mol.) (Bottle Gourd) standley fruit.
https://doi.org/10.2174/156802....
89.
Zhang, N., Li, Y., Wen, S., Sun, Y., Chen, J., Gao, Y., et al., 2021. Analytical methods for determining the peroxide value of edible oils: A mini-review. Food Chem. 358, 129834.
https://doi.org/10.1016/j.food....