Physicochemical characterization of flours and rheological and textural changes of masa and tortillas obtained from maize fertilized with nejayote and ovine manure
More details
Hide details
Department of Engineering and Technology, Campus 4, Multidisciplinary Research Unity, Laboratory 16 ( Transformation and Emerging Technologies in Foods), Faculty of Superiors Studies Cuautitlan, National Autonomous University of Mexico (UNAM), Km. 2.5 Highway, Cuautitlan-Teoloyucan San Sebastian Xhala, Cuautitlan Izcalli, State of Mexico, Mexico, C.P. 54714
Department of Mathematics, Faculty of Superiors Studies Cuautitlan, National Autonomous University of Mexico (UNAM), Campus 4, Km. 2.5 Highway Cuautitlan-Teoloyucan San Sebastian Xhala, Cuautitlán Izcalli, State of Mexico, Mexico, C.P. 54714
Department of Engineering and Technology, Faculty of Superiors Studies Cuautitlan, National Autonomous University of Mexico (UNAM), Campus 4. Multidisciplinary Research Unity, Laboratory 16. Km. 2.5 Highway Cuautitlan-Teoloyucan San Sebastian Xhala, Cuautitlan Izcalli, State of Mexico, Mexico, C.P. 54714
Department of Agricultural Science, Faculty of Superiors Studies Cuautitlan, National Autonomous University of Mexico (UNAM), Campus 4, Km. 2.5 Highway Cuautitlan-Teoloyucan San Sebastian Xhala, Cuautitlán Izcalli, State of Mexico, Mexico, C.P. 54714
National Politechnic Institute, SEPI-ESIME Zacatenco, Professional Unit “Adolfo López Mateos”, Col. Lindavista, Mexico, D. F. C. P. 07738.
María Del Carmen Valderrama Bravo   

Ingeniería y Tecnología y Matemáticas, Facultad de Estudios Superiores Cuautitlán, UNAM, Mexico
Publication date: 2020-04-02
Final revision date: 2020-01-31
Acceptance date: 2020-02-24
Int. Agrophys. 2020, 34(2): 241–252
The agronomic management of maize (Zea mays L.) modifies the structure and composition of maize grain and its products like flour, masa, and tortillas. Results have shown that the protein content in flour obtained from maize grains treated with nejayote applied at 150 m3 ha-1 (10.36 g × 100 g-1) and nejayote applied at 75 m3 ha-1 with ovine manure applied at 25 t ha-1 (10.17 g × 100 g-1) was higher than that determined in flour treated with chemical fertilizer (10.05 g × 100 g-1). The flours obtained from maize fertilized without nejayote showed the highest viscosity values and the lowest values were for chemical fertilizer (2816 mPa s) and 75 m3 ha-1 of nejayote with ovine manure applied at 25 t ha-1 (2498 mPa s). The highest elastic and viscous moduli were obtained for masa with the following fertilization regimes: 75 m3 ha-1 of nejayote with 25 t ha-1 of ovine manure, and 150 m3 ha-1 of nejayote with 25 t ha-1 of ovine manure and the lowest values of these parameters were obtained for 75 m3 ha-1 of nejayote with 50 t ha-1 of ovine manure. The cohesiveness of masa was the lowest for maize fertilized with nejayote applied at 75 to 150 m3 ha-1, and 50 t ha-1 of ovine manure. The highest concentration of 150 m3 ha-1 for nejayote and the lowest level for ovine manure applied at 25 t ha-1 had a positive influence on the production of nixtamal and tortilla.
AACC, 2000. Approved methods of the American Association of Cereal Chemists. Method 84-10 and 08-01. St. Paul, MN: American Association of Cereal Chemists.
Abdalaa L.J., Vitantonio-Mazzinia L.N., Gerdea J.A., Martí R.F., Murtaghc G., and Borrás L., 2018. Dry milling grain quality changes in Argentinean maize genotypes released from 1965 to 2016. Field Crop. Res., 226, 74-82.
Acosta-Estrada B.A., Villela-Castrejón J., Perez-Carrillo E., Gómez-Sánchez C.E., and Gutiérrez-Uribe J.A., 2019. Effects of solid-state fungi fermentation on phenolic content, antioxidant properties and fiber composition of lime cooked maize by-product (nejayote). J. Cereal Sci., 90, 102837.
Altenbach S.B., DuPont F.M., Kothari K.M., Chan R., Johnson E.L., and Lieu D., 2003. Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. J. Cereal Sci., 37, 9-20.
Amador-Rodriguez K.Y., Silos-Espino H., Valera-Montero L.L., Perales-Segovia C., Flores-Benitez S., and Martinez-Bustos F., 2019. Physico-chemical, thermal, and rheological properties of nixtamalized creole corn flour produced by high-energy milling. Food Chem., 283, 481-488.
Athene M.D., 2001. Scattering studies of the internal structure of starch granules. Starch/Stärke 53, 504-512.<504::aid-star504>;2-5.
Ayala-Rodríguez A.E., Gutiérrez-Dorado R., Milán-Carrillo J., Mora-Rochín S., López-Valenzuela J., Valdez-Ortiz A., Paredes-López O., and Reyes-Moreno C., 2009. Nixtamalised flour and tortillas from transgenic maize (Zea mays L.) expressing amarantin: Technological and nutritional properties. Food Chem., 214, 50-56.
Bello-Perez L.A., Flores-Silva P.C., Agama-Acevedo E., Figueroa-Cardenas J.D., Lopez-Valenzuela J.A., and Campanellla O.H., 2014. Effect of the nixtamalization with calcium carbonate on the indigestible carbohydrate content and starch digestibility of corn tortilla. J. Cereal Sci., 60, 421-425.
Camelo-Méndez G., Agama-Acevedo E., Tovar J., and Bello-Pérez, L.A., 2017. Functional study of raw and cooked blue maize flour: Starch digestibility, total phenolic content and antioxidant activity. J. Cereal Sci., 76, 179-185.
Contreras-Jiménez B., Gaytán-Martínez M., Morales-Sánchez E., Figueroa-Cardenas J.D., Pless R., González-Jasso E., Méndez-Montalvo G., and Velázquez G., 2017. Effects of tempering time, Ca(OH)2 concentration, and particle size on the rheological properties of extruded corn flour. Cereal Chem., 94, 230-236.
Chel-Guerrero L., Parra-Pérez J., Betancur-Ancona D., Castellanos-Ruelas A., and Solorza-Feria J., 2014. Chemical, rheological and mechanical evaluation of maize dough and tortillas in blends with cassava and malanga flour. J. Food Sci. Tech., 52, 4387-4395.
Daglia M., 2012. Polyphenols as antimicrobial agents. Curr. Opin. Biotech., 23, 174-181.
Domínguez-Hernández M.E., Zepeda-Bautista R., Domínguez-Hernández E., Valderrama-Bravo M.C., Hernández-Simón L.M., 2020. Effect of lime water-manure organic fertilizers on the productivity, energy efficiency and profitability of rainfed maize production. Arch. Agron. Soil Sci., 66, 3, 370-385.
Flores-Farías R., Martínez-Bustos F., Salinas-Moreno Y., Chang Y.K., Hernández J.G., and Ríos E., 2000. Physicochemical and rheological characteristics of commercial nixtamalised Mexican maize flours for tortillas. J. Sci. Food Agric., 80, 657-664.<657::aid-jsfa576>;2-j.
Gaytán-Martínez M., Figueroa J.D.C., Morales-Sánchez E., Vázquez-Landaverde P.A., and Martínez-Flores H.E., 2011. Physicochemical properties of masa and corn tortilla made by ohmic heating. African J. Biotech., 10, 16028-16036.
Jan K.N., Panesar P.S., Rana J.C., and Singh S., 2017. Structural, thermal and rheological properties of starches isolated from Indian quinoa varieties. Int. J. Biol. Macrom., 102, 315-322.
Keeling P.L. and Myers A.M., 2010. Biochemistry and genetics of starch synthesis. Annu. Rev. Food. Sci. Technol., 1, 271-303.
Kethireddipalli P., Hung Y.C., McWatters K.H., and Phillips R.D., 2002. Effect of milling method (wet compared with dry) on the functional properties of cowpea (Vigna unguiculata) pastes and end product (akara) quality. J. Food Sci., 67, 48-52.
López-Pacheco I.Y., Carrillo-Nieves D., Salinas-Salazar C., Silva-Núñez A., Arévalo-Gallegos A., Barceló D., Afewerki S., Hafiz M.N.I., Parra-Saldívar R., 2019. Combination of nejayote and swine wastewater as a medium for Arthrospira maxima and Chlorella vulgaris production and wastewater treatment. Sci. Total Environ., 676, 356-367.
Mahmood F., Khan I., Ashraf U., Shahzad T., Hussain S., Shahid M., Abid M., and Ullah S., 2017. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J. Soil Sci. Plant Nut., 17(1), 22-32.
Martınez-Flores H.E., Garnica-Romo M.G., Romero V.J.U., and Yahuaca J.B., 2006. Evaluating the quality of lipids during alkaline cooking of corn. J. Food Lipids, 13, 177-185.
Mir S.A., Bosco S.J.D., and Sunooj K.V., 2013. Evaluation of physical properties of rice cultivars grown in the temperate region of India. Retrieved from Int. Food Res. J., 20, 1521-1527.
Niño-Medina G., Carvajal-Millán E., Lizardi J., Rascon-Chu A., Márquez-Escalante J., Gardea A., et al., 2009. Maize processing waste water arabinoxylans: Gelling capability and cross-linking content. Food Chem., 115, 1286-1290.
Osorio-Díaz P., Agama-Acevedo E., Bello-Pérez L.A., Islas-Hernández J.J., Gómez-Montiel N.O., and Paredes- López O., 2011. Effect of endosperm type on texture and in vitro starch digestibility of maize tortillas. LWT- Food Sci. Tech., 44, 611-615.
Pei-Yin L. and Hsi-Mei L., 2011. Bioactive compounds in rice during grain development. Food Chem., 127, 86-93.
Peña-Reyes R.A., Ramírez-Romero G.A., Fernández-Perrino F.J., and Cruz-Guerrero A.E., 2017. Effect of nixtamalization processing temperature on maize hydration and the textural properties of masa and tortillas. J. Food Process. Pres., 41, e13136.
Pérez J., Muñoz-Dorado J., De la Rubia T., and Martínez J., 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol., 5, 53-63.
Ramírez-Jiménez K., Rangel-Hernández J., Morales-Sánchez E., Loarca-Piña G., and Gaytán-Martínez M., 2019. Changes on the phytochemicals profile of instant corn flours obtained by traditional nixtamalization and ohmic heating process. Food Chem., 276, 56-62.
Rincón-Londoño N., Vega-Rojas N., Contreras-Padilla M., Acosta- Osorio A., and Rodríguez-García M.E., 2016. Analysis of the pasting profile in corn starch: structural, morphological, and thermal transformations. Int. J. Biol. Macrom., 91, 106-114.
Rocha-Villarreal V., Hoffmann J.F., Levien V.N., Serna-Saldivar S.O., and García-Lara S., 2018. Hydrothermal treatment of maize: Changes in physical, chemical, and functional properties. Food Chem., 263, 225-231.
Ruiz-Gutiérrez M.G., Quintero-Ramos A., Meléndez-Pizarro C.O., Talamás-Abbud R., Barnard J., Márquez-Meléndez R., and Lardizábal-Gutiérrez D., 2012. Nixtamalization in two steps with different calcium salts and the relationship with chemical, texture and thermal properties in masa and tortilla. J. Food Process Eng., 35, 772-783.
SAGARPA, Secretariat of Agriculture, Fisheries and Food, 2002. Mexican Standard NMXFF- 034/1-SCFI-2002. Non industrialized food products for human consumption. Cereals white corn for alkaline process of corn tortillas and nixtamalized corn products. Specifications and test method. General Direction of Standards, SAGARPA (in Spanish). SAGARPA, Mexico.
Salazar-Sosa E., Trejo-Escareño H.I., Vázquez-Vázquez C., López-Matínez J.D., Fortis-Hernández M., Zuñiga-Tarango R., and Amado-Álvarez J.P., 2009. Distribution of available nitrogen in the soil profile after appliying bovine manure in corn forage (in Spanish). Terra Latinoam., 27, 373-382.
Santiago-Ramos D., Figueroa-Cárdenas J.D., Véles-Medina J.J., and Mariscal-Moreno R.M., 2017. Changes in the thermal and structural properties of maize starch during nixtamalization and tortilla-making processes as affected by grain hardness. J. Cereal Sci., 74, 72-78.
Santiago-Ramos S., Figueroa-Cárdenas J.D., Véles-Medina J.J., Mariscal-Moreno R.M., Reynoso-Camacho R., Ramos-Gómez M., Gaytán-Martínez M., and Morales-Sánchez E., 2015. Resistant starch formation in tortillas from in ecological nixtamalization process. Cereal Chem., 92, 185-192.
Schröder J.J., Vermeulen G.D., Van Der Schoot J.R., Van Dijk W., Huijsmans J.F.M., Meuffels G.J.H.M., and Van Der Schans D.A., 2015. Maize yields benefit from injected manure positioned in bands. Euro. J. Agron., 64, 29-36.
Seebauer J.R., Singletary G.W., Krumpelman P.M., Ruffo M.L., and Below F., 2010. Relationship of source and sink in determining kernel composition of maize. J. Exp. Bot., 61, 511-519.
Shi L., Li W., Sun J., Qiu Y., Wei X., Luan G., Hu Y., and Tatsumi E., 2016. Grinding of maize: The effects of fine grinding on compositional, functional and physicochemical properties of maize flour. J. Cereal Sci., 68, 25-30.
Song Z., Wang J., Sun M., Wu J., Gong Ch., and Liu G., 2016. Effects of organic fertilizer applications on starch changes in tobacco (Nicotiana tabacum L.) leaves during maturation. Soil Sci. Plant Nutr., 62, 173-179.
Suarez-Meraz A., Ponce-Vargas S.M., Lopez-Maldonado J.T., Cornejo-Bravo J.M., Oropeza-Guzman M.T., Lopez-Maldonado E.A., 2016. Eco-friendly innovation for nejayote coagulation-flocculation process using chitosan: Evaluation through zeta potential measurements. Chem. Eng. J., 284, 536-542.
Thachil M.T., Chouksey M.K., and Gudipati V., 2014. Amylose-lipid complex formation during extrusion cooking: effect of added lipid type and amylose level on corn-based puffed snacks. Food Sci. Technol., 49, 309-314.
Thitisaksakul M., Jiménez R.C., Arias M.C., and Beckles D.M., 2012. Effects of environmental factors on cereal starch biosynthesis and composition. J. Cereal Sci., 56, 67-80.
Tofiño A., Mauricio R.H., and Ceballos H., 2007. Effect of abiotic stress on the synthesis and degradation of starch. A review (in Spanish). Agronomía Colombiana, 25, 245-254.
USDA, 2010. Composting. In: National Engineering Handbook. United States: USDA NRCS.
Valderrama-Bravo C., Domínguez-Pacheco A., Hernández-Aguilar C., Zepeda-Bautista R., Del Real-López A., Pahua-Ramos M.E., Arellano-Vázquez J.L., and Moreno-Martínez E., 2017. Physical and chemical characterization of masa and tortillas from parental lines, single crosses and one hybrid of maize. Int. Agrophys., 31, 129.138.
Valderrama-Bravo C., Gutiérrez-Cortez E., Contreras-Padilla M., Oaxaca-Luna A., Del Real López A., Espinosa-Arbelaez D.G., and Rodríguez-García M.E., 2013. Physic-mechanic treatment of nixtamalization by-product (nejayote). CyTA-J. Food, 11, 75-83.
Valderrama-Bravo C., Gutiérrez-Cortez E., Contreras-Padilla M., RojasMolina I., Mosquera J.C., Rojas-Molina A., Beristain F., and Rodríguez-García M.E., 2012. Constant pressure filtration of lime water (nejayote) used to cook kernels in maize processing. J. Food Eng., 110, 478-486.
Valderrama-Bravo C., López-Ramírez Y., Jiménez-Ambriz S., Oaxaca-Luna A., Domínguez-Pacheco A., Hernández-Aguilar C., and Moreno-Martínez E., 2015. Changes in chemical, viscoelastic, and textural properties of nixtamalized dough with nejayote. LWT-Food Sci. Tech., 61, 496-502.
Vázquez-Carrillo M.G., Ramos D.S., Salinas-Moreno Y., Rojas-Martínez I., Arellano-Vázquez J., Velázquez-Cardelas G.A., and Espinosa-Calderón A., 2012. Genotype-environment interaction of yield and grain and tortilla quality of maize hybrids at the highlands of Tlaxcala, Mexico (in Spanish). Rev. Fitotec. Mex., 35, 229-237.
Vázquez-Carrillo M.G., Santiago-Ramos D., Gaytán-Martínez M., Morales-Sánchez E., and Guerrero-Herrera M.J., 2015. High oil content maize: Physical, thermal and rheological properties of grain, masa, and tortillas. LWT – Food Sci. Tech., 60, 156-161.
Vilche C., Gely M.C., and Santalla, E., 2003. Physical properties of quinoa seeds. Biosyst. Eng., 86, 59-65.
Villada J.A., Sánchez-Sinencio F., Zelaya-Angel O., Gutiérrez-Cortez E., and Rodríguez-García M.E., 2017. Study of the morphological, structural, thermal, and pasting corn transformation during the traditional nixtamalization process: From corn to tortilla. J. Food Eng., 212, 242-251.
Vitaglione P., Napolitano A., and Fogliano V., 2008. Cereal dietary fiber: a natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci. Tech., 19, 451-463.
Wajira S.R. and David S.J., 2006. Gelatinization and solubility of corn starch during heating in excess water: New Insights. J. Agr. Food Chem., 54, 3712-3716.
Wang L., Xie B.J., Shi J., Xue S., Deng Q.C., Wei Y., and Tian B.Q., 2010. Physicochemical properties and structure of starches from Chinese rice cultivars. Food Hydrocoll., 24, 208-216.
Wu M. and Arntfield S., 2016. Influence of added soy presscake and soy flour on some physical and sensory properties of corn tortillas. J. Food Sci., 81. S2552-S2558.
Zepeda-Bautista R., Carballo-Carballo A., Muñoz-Orozco A., Mejía-Contreras J.A., Figueroa-Sandoval B., and González-Cossio F.V., 2007. Nitrogen fertilization effect on the physical, structural and alkaline-cooking quality characteristics of grain from corn hybrids (in Spanish). Agric. Tec. Mex., 33, 17-24.
Zhang Y.G., Yang S., Ming M.F., Ping C.J., Zhang Y., Wang R., Xu Z.W., Bai Y.F., and Jiang Y., 2015. Sheep manure application increases soil exchangeable base cations in a semi-arid steppe of Inner Mongolia. J. Arid Land, 7, 361-369.