Post-harvesting of soybean seeds – engineering, processes technologies, and seed quality: a review
More details
Hide details
Department of Agricultural Engineering, Rural Sciences Center, Federal University of Santa Maria, Avenue Roraima, 1000, Camobi, 97105-900, Santa Maria, Rio Grande do Soul, Brazil
Department of Agricultural Engineering, Laboratory of Postharvest, Campus Cachoeira do Sul, Federal University of Santa Maria, Highway Taufik Germano, 3013, Passo D’Areira, 96506-322, Cachoeira do Sul, Rio Grande do Sul, Brazil
Paulo Carteri Coradi   

Department of Agricultural Engineering, Campus Cachoeira do Sul, Federal University of Santa Maria, Rodovia Taufik Germano, 3013, 96503-205, Cachoeira do Sul, Brazil
Final revision date: 2022-02-18
Acceptance date: 2022-03-16
Publication date: 2022-04-06
Int. Agrophys. 2022, 36(2): 59–81
  • Science and technology in soybean seeds.
  • Post-harvest engineering of soybean seeds.
  • Soybean processing and storage units.
  • Post-harvest operations and the physiological quality of soybean seeds.
  • Conservation of qualitative attributes in post-harvest soybean seeds.
Superior agricultural yields are obtained from seeds which have a high physiological potential, these are conserved in the post-harvest stage. Thus, it is crucial to implement post-harvest projects with appropriate technologies related to the equipment used and the control of operations. This article presents a review of the technical-kinetic developments in the area of the technology of processing post-harvest soybean seeds, with a particular focus on the evolution and current circumstances of the sector. The findings from this research reveal significant technological advances in the drying, processing and storage of seeds at different levels and in various areas of soybean production. In drying systems, temperatures of up to 40°C are recommended, while seed batches must remain static in drying chambers. When processing and standardizing seeds, it is recommended that low-moving equipment and abrupt contacts with mechanical systems, such as pneumatic and gravity separators, be employed to minimize dropping and contact with seeds. In soybean storage, the applications of technologies that can control temperature and relative humidity, and also maintain the storage moisture content in a hygroscopic balance are recommended. The storage of seeds in coated big bags and artificial cooling; a controlled and modified atmosphere serve to preserve essential seed qualities. This review concludes that over the years, there has been a reduction in the cumulative losses due to post-harvest processes.
This work and each organization’s of resources and scholarships was financially supported by CAPES (Higher Education Personnel Improvement Coordination)-Financial code 001, CNPq (National Council for Technological Scientific Development), and FAPERGS-RS (Research Support Foundation of the State of Rio Grande do Sul) (2019-2022).
The authors declare that they have no conflict of interest
Afrakhteh S., Frahmandfar E., Hamidi A., and Ramandi H.D., 2013. Evaluation of growth characteristics and seedling vigor in two cultivars of soybean dried under different temperature and fluidized bed dryer. Int. J. Agric. Crop Sci., 5: 2537-2544.
Aghbashlo M., Sotudeh-Gharebagh R., Zarghami R., Mujumdar A.S., and Mostoufi N., 2014. Measurement techniques to monitor and control fluidization quality in fluidized bed dryers: A review. Drying Technol., 32, 1005-1051.
Aghbashlo M., Hosseinpour S., and Mujumdar A.S., 2015. Application of Artificial Neural Networks (ANNs) in drying technology: a comprehensive review. Drying Technol., 33: 1397-1462.
Albini G., Freire F., and Freire J.T., 2018. Barley: Effect of airflow reversal on fixed bed drying. Chem. Eng. Proc., 134: 97-104.
Alfy A., Kiran B.V., Jeevitha G.C., and Hebbar U., 2016. Recent Developments in Superheated Steam Processing of Foods-A Review. Crit. Rev. Food Sci. Nutr., 56: 2191-2208.
Ali I.M., Nulit R., Ibrahim M.H., and Uddin M.D.K., 2017. Deterioration of quality soybean seeds (Glycine max (L.) AGS 190) at harvest stages, seed moisture content and storage. Int. J. Biosci., 10: 372-381.
Anand A., Gareipy Y., and Raghavan V., 2020. Fluidized bed and microwave-assisted fluidized bed drying of seed. Drying Technol., 49: 1-22, 2020.
Anankware P.J., Fatunbi A.O., Afreh-Nuamah K., Obeng-Ofori D., and Ansah A.F., 2012. Efficacy of the multiple-layer hermetic storage bag for biorational management of primary beetle pests of stored maize. Acad. J. Entomol., 5: 47-53.
Anwar S.A., Riaz S., Ahmad C.A., Subhani M.N., and Chattha M.B., 2013. Mycoflora associated with stored seeds of soybean. Mycopathology, 11: 85-90.
Araújo M.M.V., Caneppele M.A.B., and Trage A.K., 2017. Soybeans submitted to different storage conditions. Nativa J., 5: 79-84.
Arruda E.B., Lobato F.S., Assis A.J., and Barrozo M.A.S., 2009. Modeling of fertilizer drying in roto-aerated and conventional rotary dryers. Drying Technol., 27: 1192-1198.
Atungulu G.G., and Olatunde G.A., 2018. Assessment of new in-bin drying and storage technology for soybean seed. Drying Technol., 36: 383-399.
Avelar S.A.G., Levien A.M., Peske S.T., Villela F.A., and Baudet L., 2011. Stationary drying of soybean seeds with dehumidified air by cooling. Braz. J. Seeds, 33: 454-462.
Avhad M.R., and Marchetti J.M., 2016. Mathematical modeling of the drying kinetics of Hass avocado seeds. Ind. Crops Prod., 91: 76-97.
Ayadi S.M., Bahloul N., and Kechaou N., 2020. Mathematical modeling of water sorption isotherms and thermodynamic properties of Cucumis melo L. seeds. LWT, 131: 1-9.
Babaki A., Askari G., and Djomeh Z.E., 2020. Drying behavior, diffusion modeling, and energy consumption optimization of Cuminum cyminum L. undergoing microwave-assisted fluidized bed drying. Drying Technol., 38: 224-234.
Bai J.W., Xião H.W., Ma H.L., and Zhou C.S., 2018. Artificial Neural Network modeling of drying kinetics and color changes of ginkgo biloba seeds during microwave drying process. J. Food Quality, 1, 1-8.
Bakhtavar M.A., Afzal I., and Basra S.M.A., 2019. Moisture adsorption isotherms and quality of seeds stored in conventional packaging materials and hermetic Super Bag. PLos One, 1: 1-11.
Balasubramanian S., Singh K.K., and Kumar R., 2012. Physical properties of coriander seeds at different moisture content. Int. Agrophys., 26: 419-422.
Ballesteros D., Pritchard H.W., and Walters C., 2020. Dry architecture: Towards the understanding of the variation of longevity in desiccation-tolerant germplasm. Seed Sci. Res., 30: 142-155.
Barrozo M.A.S., Henrique H.M., Sartori D.J.M., and Freire J.T., 2006. The use of the orthogonal collocation method on the study of the drying kinetics of soybean seeds. J. Stored Prod. Res., 42: 348-356.
Barrozo M.A.S., Mujumdar A., and Freire J.T., 2014. Air-Drying of Seeds: A Review. Drying Technol., 32: 1127-1141.
Bartosik R., 2012. An inside look at the silo-bag system. In: Proc. 9th Int. Conf. Controlled Atmospheres and Fumigation of Stored Products (Eds S. Navarro, H.J. Banks, D.S. Jayas, C.H. Bell, R.T. Noyes, A.G. Ferizli, M. Emekci, A.A. Isikber K. Alagusundaram), CAF, October 5-19, Antalya, Turkey.
Belgiu M., and Dr̆agu T.L., 2016. Random forest in remote sensing: A review of applications and future directions. J. Photogramm. Remote Sens., 114: 24-31.
Bell C.H., 2014. A review of insect responses to variations encountered in the managed storage environment. J. Stored Prod. Res., 59: 260-274.
Blaifi S.A., Moulahoum S., Benkercha R., Taghezouit B., and Saim A., 2018. M5P model tree based fast fuzzy maximum power point tracker. Sol. Energy, 163: 405-424.
Borges C.W., Jorge L.M.M., Jorge R.M.M., 2018. Modeling and thermodynamic properties of soybean cultivar BRS257 hydration. Food Proc. Eng., 42: 1-9.
Brito R.C., Zacharias M.B., Forti V.A., and Freire J.T., 2020a. Physical and physiological quality of intermittent soybean seeds drying in the spouted bed. Drying Technol., 1: 1-13.
Brito R.C., Bettega R., and Freire J.T., 2020b. Energy analysis of intermittent drying in the spouted bed. Drying Technol., 37: 1498-1510.
Brooker D.B., Bakker-Arkema F.W., and Hall C.W., 1992. Drying and storage of grains and oilseeds. Westport: The AVI Publishing Company, 450 p.
Brzezinski C.R., Abati J., Henning F.A., Henning A.A., França Neto J.B., Krzyzanowski F.C., and Zucareli C., 2017. Spray volumes in the industrial treatment on the physiological quality of soybean seeds with different levels of vigor. J. Seed Sci., 39: 174-181.
Cao X., Zhang M., Fang Z., Mujumdar A.S., Jiang H., Qian H., and Huangyuan A., 2017. Drying kinetics and product quality of green soybean under different microwave drying methods. Drying Technol., 35: 240-248.
Cardoso L., Bartosik R., Torre D., Abadía B., and Juliana M.S., 2014. Grain storage in bag silo. Buenos Aires: Ipesasilo, 33-47.
Carvalho E.R., Oliveira K.A., Mavaieie D.P.R., Silva H.W., and Lopes C.G.M., 2016. Pre-packing cooling and types of packages in maintaining physiological quality of soybean seeds during storage. J. Seed Sci., 38: 129-138.
Chojnowski M., Corbineau F., and Côme D., 1997. Physiological and biochemical changes induced in sunflower seeds by osmopriming and subsequent drying, storage and aging. Seed Sci. Res., 7: 323-332.
Chormule S.R., Changade N.M., and Patel J.B., 2018. Effect of seed treatments on storability of vegetable seeds: a review. Plant Arch., 18: 28-32.
Chryat Y., Decloux M.E., Labarde C., and Romdhana H., 2015. A concept and industrial testing of a superheated steam rotary dryer demonstrator: Cocurrent-triple pass design. Drying Technol., 37: 468-474.
Chua K.J., Chou S.K., Jo J.C., and Hawlader M.N.A., 2007. Heat pump drying: recent developments and future trends. Drying Technol. 20: 1579-1610.
Coradi P.C., Borém F.M., Reinato C.H., 2014. Drying process of coffee cherries and the influence of relative humidity in mathematical modeling, moisture content and enthalpy of vaporization. Energ. Agric., 29: 148-157.
Coradi P.C., Fernandes C.H.P., and Helmich J.C., 2016. Adjustment of mathematical models and quality of soybean grains in the drying with high temperatures. Rev. Bras. Eng. Agric. Amb., 20: 385-392.
Coradi P.C., Souza A.E., and Borges M.C.R., 2017. Yield and acidity indices of sunflower and soybean oils in function of grain drying and storage. Acta Sci. Agron., 39: 255-266.
Coradi P.C., and Lemes A.F.C., 2018. Validation of an experimental prototype of thick-layer fixed bed dryer and determination of the quality of the dried soybean grains. Acta Sci. Agron., 40: 1-11.
Coradi P.C., Lima R.E., Alves C.Z., Teodoro P.E., and Cândido A.C.D.S., 2020a. Evaluation of coatings for application in raffia big bags in conditioned storage of soybean cultivars in seed processing units. PLoS One, 15: e0242522.
Coradi P.C., Lima R.E., Padia C.L., Alves C.Z., Teodoro P.E., and Silva A.C.C., 2020b. Soybean seed storage: packaging technologies and conditions of storage environments. J. Stored Prod. Res., 89: 101709.
Coradi P.C., Padia C.L., Jaques L.B.A., Souza G.A.C.D., Lima R.E., Müller A., Teodoro P.E., Steinhaus J.I., and Carneiro L.D.O., 2020c. Adaptation of technological packaging for conservation of soybean seeds in storage units as an alternative to modified atmospheres. PLoS One, 15: e0241787.
Coradi P.C., Oliveira M.B., Carneiro L.O., Souza G.A.C., Elias M.C., Brackmann A., and Teodoro P.E., 2020d. Technological and sustainable strategies for reducing losses and maintaining the quality of soybean grains in real production scale storage units. J. Stored Prod. Res., 87: 101624.
Coradi P.C., Daí P.V.S., Oliveira M.B., Carneiro L.O., Steinhaus J.I., Coelho G.A., and Maldaner V., 2020e. Energy-qualitative and sustainable impacts on different soy grain drying technologies. J. Agric. Sci., 12: 1-20.
Coradi P.C., Martens S., Rodrigues H.E., Leal A.F., Costa D.R.D., Saath R., and Borém F.M., 2021a. Development and validation of a heated drying air diffusion system to optimize rotary dryers and final coffee quality. PLoS One, 16: e0251312.
Coradi P.C., Lemes Â.F.C., Müller A., Jaques L.B.A., Dubal Í.T.P., Bilhalva N.D.S., and Maier D.E., 2021b. Silo-dryer-aerator in fixed and thick layer conceptualized for high quality of grains applied in different social scales post-harvest: modeling and validation. Drying Technol., 1: 1-26.
Demito A., and Afonso A.D.L., 2009. Qualidade das sementes de soja resfriadas artificialmente. Eng. Agric., 17: 7-14.
Ebone L.A., Caverzan A., Tagliari A., Chiomento J.L.T., Silveira D.C., and Chavarria G., 2020. Soybean seed vigor: uniformity and growth as key factors to improve yield. Agron., 10: 1-15.
Egmont-Petersen M., Ridder D., and Handels H., 2002. Image processing with neural networks a review. Pattern Recognit., 35: 2279-2301.
Feng L., Zhang M., and Adhikari B., 2014. The effect of water on the quality of dehydrated products: A review of novel characterization methods and hybrid drying technologies. Drying Technol., 32: 1872-1884.
Ferreira F.C., Vilela F.A., Meneghello G.E., and Soares V.N., 2017. Cooling of soybean seeds and physiological quality during storage. J. Seed Sci., 39: 385-392.
Flor E.P.O., Cícero S.M., França Neto J.D.B., and Krzyzanowski F.C., 2004. Evaluation of mechanical damage in soybean seeds through image analysis. Braz. J. Seeds, 26: 68-76.
Forti V.A., Cicero S.M., and Pinto T.L.F., 2010. Evaluation of the evolution of ‘moisture’ damage and reduced vigor in soybean seeds, cultivar TMG 113-RR, during storage, using X-ray images and physiological potential tests. Braz. J. Seeds, 32: 123-133.
Fu Y.B., Ahmed Z., and Diederichsen A., 2015. Towards a better monitoring of seed ageing under ex situ seed conservation. Conserv. Physiol., 3: 1-15.
Galvez A.V., Miranda M., Diaz L.P., Lopez L., Rodriguez K., and Scala K.D., 2010. Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresour. Technol., 101: 7165-7270.
Garvin A., Ibarz R., and Ibarz A., 2017. Kinetic and thermodynamic compensation. A current and practical review for foods. Food Res. Intern., 96: 132-153.
Ge R., Ye J., Wang H., and Yang W., 2016. Investigation of gas–solids flow characteristics in a conical fluidized bed dryer by pressure fluctuation and electrical capacitance tomography. Drying Technol., 34: 1359-1372.
Groot S.P., Groot L., Kodde J., and Van Treuren R., 2015. Prolonging the longevity of ex situ conserved seeds by storage under anoxia. Plant Genetic Resour., 13: 18-26.
Grudzień K., Niedostatkiewicz M., Adrien J., Tejchman J., and Maire E., 2011. Quantitative estimation of volume changes of granular materials during silo flow using X-ray tomography. Chem. Eng. Proc. Proc. Intens., 50: 59-67.
Grudzień K., Chaniecki Z., and Babout L., 2018. Study of granular flow in silo based on electrical capacitance tomography and optical imaging. Flow Meas. Instrum., 62: 186-195.
Guilherme G.L., and Nicolin D.J., 2020. Soybean drying as a moving boundary problem: Shrinkage and moisture kinetics prediction. J. Food Proc. Eng., 43: 1-9.
Hartmann Filho C.P., Goneli A.L.D., Maseto T.E., Martins E.A.S., and Oba G.C., 2016. The effect of drying temperatures and storage of seeds on the growth of soybean seedlings. J. Seed Sci., 38(4): 287-295.
Hashemi M., Shahraki S.M., Jafari M., Mashkour M., and Smaeilzadeh E., 2014. Optimization of closed-cycle fluidized bed drying of sesame seeds using response surface methodology and genetic algorithms. Intern. J. Food Eng., 10: 167.
Hemis M., Choudhary R., Becerra M.N., Kohli P., and Raghavan V., 2016. Modelling of microwave assisted hot-air drying and microstructural study of oilseeds. Intern. J. Agric. Biol. Eng., 9: 167-177.
Horabik J., Molenda M., and Ross I.J., 1992. Friction force reversal in a model grain bin during emptying. Int. Agrophysics, 6: 167-171.
Horng G.J., Liu M.X., and Chen C.C., 2020. The smart image recognition mechanism for crop harvesting system in intelligent agriculture. IEEE Sens. J., 20: 2766-2781.
Huang M., Wang Q., Zhang M., and Qibing Z., 2014. Prediction of color and moisture content for vegetable soybean during drying using hyperspectral imaging technology. J. Food Eng., 128: 24-30.
Hudson A.R., Ayre D.J., and Ooi M.K., 2015. Physical dormancy in a changing climate. Seed Sci. Res., 25: 66-81.
Izli N., Unal H., and Sincik M., 2009. Physical and mechanical properties of rapeseed at different moisture content. Int. Agrophys., 23: 137-145.
Jahanbakhshi A., Kaveh M., Taghinezhad E., and Sharabiani V.R., 2020. Assessment of kinetics, effective moisture diffusivity, specific energy consumption, shrinkage, and color in the pistachio kernel drying process in microwave drying with ultrasonic pretreatment. J. Food Proc. Preserv., 44: 1-15.
Jan K.N., Panesar P.S., and Singh S., 2019. Effect of moisture content on the physical and mechanical properties of quinoa seeds. Int. Agrophys., 33(1): 41-48.
Jiang Y., Li L., He F., Yan W., Tang Y., Yang R., and Zhao W., 2020. Highly effective inactivation of anti‐nutritional factors (lipoxygenase, urease and trypsin inhibitor) in soybean by radio frequency treatment. Intern. J. Food Sci. Technol., 1: 1-10.
Jilani M.T., Rehman M.Z., Khan A.M., Chughtai O., Abbas M.A., and Khan M.T., 2019. An implementation of IoT-based microwave sensing system for the evaluation of tissues moisture. Microelectron. J., 88: 117-127.
Johann G., Silva E.A., and Pereira N.C., 2018. Modelling and optimization of grape seed drying: Equivalence between the lumped and distributed parameter models. Biosyst. Eng., 176: 26-35.
Jung H., and Yoon W.B., 2018. The effect of intermittent drying on the cracking ratio of soybeans (Glycine max L.) at different relative humidity using reaction engineering approach modeling. Food Sci. Nutr. 6: 1-9.
Kandil A.A., Sharief A.E., and Sheteiwy S., 2013. Effect of seed storage periods, conditions and materials on germination of some soybean seed cultivars. Am. J. Experim. Agric., 3: 1021-1043.
Khatchatourian O.A., Binelo M.O., and Lima R.F., 2014. Simulation of soya bean flow in mixed-flow dryers using DEM. Biosyst. Eng. 123: 68-76.
Kibar H., and Ozturk T., 2008. Physical and mechanical properties of soybean. Int. Agrophysics, 22(3): 239-244.
Kleinhans U., Wieland C., Frandsen F.J., and Spliethoff H., 2018. Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior. Prog. Energy Combust. Sci., 68: 65-168.
Kong F., Chang S.K.C., Liu Z., and Wilson L.A., 2008. Changes of soybean quality during storage as related to soymilk and tofu making. J. Food Sci., 73: 134-144.
Konopatzki E.A., Christ D., Coelho A.R.P., Nóbrega L.H.P., Dellagostin S., and Lenz A.M., 2019. Immediate and latent effects of drying soybeans with dehydrated air. Acta Sci. Agron., 41: 1-9.
Krzyzanowski F.C., West S.H., and Franca Neto J.B., 2006. Drying soybean seed using air ambient temperature at low relative humidity. Braz. J. Seeds, 28: 77-83.
Krzyzanowski F.C., Lorini I., Henning A.A., and França Neto J.B., 2019. Physiological and sanitary performance of soybean seeds during storage after phosphine fumigation. J. Seed Sci., 41: 280-285.
Laoretani D., Gely M.C., and Nolasco S., 2017. Effect of two drying processes about soybean seed quality. Agric. Eng. Intern., 19: 124-132.
Le K.H., Kharaghani A., Kirsch C., and Tsotsas E., 2017. Discrete pore network modeling of superheated steam drying. Drying Technol., 35: 1584-1601.
Levien A., Baudet L., and Peske S., 2008. Stationary drying of soybean seed using drying air of different relative humidities. Seed Sci. Technol., 36: 148-156.
Lheonye A., Gariepy Y., and Raghavan V., 2020. Computer vision for real-time monitoring of shrinkage for peas dried in a fluidized bed dryer. Drying Technol., 38: 130-146.
Li J., Liang G.C., and Bennamoun L., 2016. Superheated steam drying: Design aspects, energetic performances, and mathematical modeling. Ren. Sustain. Energy Rev., 60: 1562-1583.
Lima A.G.B., Delgado J.M.P., Neto S.R.F., and Franco C.M., 2015. Drying and energy technologies - intermittent drying: Fundamentals, modeling and applications. Drying and Energy Technol., 63: 19-41.
Mahjabin S.B. and Abidi A.B., 2015. Physiological and biochemical changes during seed deterioration: a review. Intern. J. Recen. Sci. Res., 6: 3416-3422.
Malekjani N., and Jafari S.M., 2018. Simulation of food drying processes by Computational Fluid Dynamics (CFD): recent advances and approaches. Trends Food Sci. Technol., 78: 206-223.
Martynenko A., 2017. Computer vision for real-time control in drying. Food Eng. Rev., 9: 91-111. 10.1007/s12393-017-9159-5.
Maryam D., and Oskouie B., 2011. Study the effect of mechanical damage at processing on soybean seed germination and vigor. J. Agric. Biol. Sci., 6: 60-64.
Mbofung G.C.Y., Goggi A.S., Leandro L.F.S., and Mullen R.E., 2013. Effects of storage temperature and relative humidity on viability and vigor of treated soybean seeds. Crop Sci., 53: 1086-1095.
McDonald M.B., 1998. Seed quality assessment. Seed Sci. Res. 8: 265-276.
McGilp L., Duquette J., Braaten D., Kimball J., and Porter R., 2020. Investigation of variable storage conditions for cultivated northern wild rice and their effects on seed viability and dormancy. Seed Sci. Res., 30: 21-28.
McNair J.N., Sunkara A., and Frobish D., 2012. How to analyse seed germination data using statistical time-to-event analysis: non-parametric and semi-parametric methods. Seed Sci. Res., 22: 77-95.
Mendonça A.P., Sampaio P.T.B., Almeida F.A.C., Ferreira R.F., and Novais J.M., 2015. Determination of drying curves of andiroba seeds in a solar dryer. Rev. Bras. Eng, Agric. Amb., 19: 382-387.
Midorikawa K., Kuroda M., Terauchi K., Hoshi M., Ikenaga S., Ishimaru Y., and Asakura T., 2014. Additional nitrogen fertilization at heading time of rice down-regulates cellulose synthesis in seed endosperm. PLoS One, 9: 1-9.
Minea V., 2015. Overview of heat-pump-assisted drying systems, part II: data provided vs. results reported. Drying Technol., 33: 527-540.
Mohsenin N.N., 1980. Physical properties of plant and animal materials. New York, Gordon Breach Sci. Publishers.
Molenda M., Horabik J., and Ross I.J., 1998. Stress and deformation of wheat in direct shear test. Int. Agrophysics, 12: 115-118.
Molenda M., Horabik J., Thompson S.A., and Ross I.J., 2004. Effects of grain properties on loads in model silo. Int. Agrophysics, 18: 329-332.
Moreano T.B., Marques O.J., Braccini A.L., Scapim C.A., França-Neto J.D.B., and Krzyzanowski F., 2018. Evolution of the physical and physiological quality of soybean seeds during processing. J. Seed Sci., 40: 313-322.
Nadi F., and Tzempelikos D., 2018. Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters. Heat and Mass Transfer, 54: 1853-1866.
Nagel M., and Börner A., 2010. The longevity of crop seeds stored under ambient conditions. Seed Sci. Res., 20: 1-12.
Nambara E., Okamoto M., Tatematsu K., Yano R., Seo M., and Kamiya Y., 2010. Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res., 20: 55-67.
Neves J.M.G., Oliveira J.A., Silva H.P., Reis R.G.E., Zuchi J., and Vieira A., 2016. Quality of soybean seeds with high mechanical damage index after processing and storage. Rev. Bras. Eng. Agric. Amb., 20: 1025-1030.
Njonjo M.W., Muthomi J.W., and Ombe A.W.M., 2019. Production practices, postharvest handling, and quality of cowpea seed used by farmers in Makueni and Taita Taveta counties in Kenya. Intern. J. Agron., 1: 1-13.
Nobrega L.H.P., Silva T.A.C.S., Meneghetti A.M., Senem J., Tonini M., and Nunes J.V.D., 2019. Physiological quality and aflatoxins prevalence in conventional and transgenic soybeans during storage. Biosci. J., 35: 55-66.
Noor M., Akbar M., Khan Z., Ishtiaq M., and Shahzad M., 2011. Comparative effectiveness of GrainPro CocoonTM with traditional storage systems against Tribolium castaneum (Hbst.), Rhyzopertha dominica (F.) and Sitophilus oryzae (L.). African J. Agric. Res., 6: 2784-2787.
Ochandio D., Bartosik R., Gastón A., Abalone R., Barreto A.A., and Yommi A., 2017. Modeling respiration rate of soybean seeds (Glycine max (L.)) in hermetic storage. J. Stored Prod. Res. 74: 36-45.
Odjo S., Burgueño J., Rivers A., and Verhulst N., 2020. Hermetic storage technologies reduce maize pest damage in smallholder farming systems in Mexico. J. Stored Prod. Res., 88: 1-13.
Oksanen T., 2018. Controlling Air Flow in Recirculating Mixed Flow Batch Dryer with Double Bed Mode. Comput. Electron. Agric., 149: 133-138.
Ong S.P., Lim L.C., and Hii C.L., 2012. Optimization of heat pump-assisted intermittent drying. Drying Technol., 30: 1676-1687.
Park H.W., and Yoon W.B., 2018. Development of a novel image analysis technique to detect the moisture diffusion of soybeans [Glycine max (L.)] during rehydration using a mass transfer simulation model. Food and Bioproc. Technol., 11: 1887-1894.
Park H.W., and Yoon W.B., 2019. Prediction of the intermittent drying behavior of soybeans [Glycine max (L.)] using novel multilayerd mass transfer simulation with an image analysis. Drying Technol., 37: 1228-1238.
Perea F.M.J., Garibay F.G., Chanona P.J.J., Calderón D.G., Méndez J.V.M., Palacios G.E., and Gutiérrez L.G.F., 2012. Mathematical modeling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Ind. Crops Prod., 38: 64-71.
Peres J.V.G., Carcel J.A., Rieira J.A., Rosselló C., and Mulet A., 2012. Intensification of low-temperature drying by using ultrasound. Drying Technol., 30(12): 1199-1208.
Petry V.J., and Weber P.E., 2015. Mathematical modeling of heat and mass transfer processes in intermittent drying of soybeans. CNMAC 3: 1-7.
Pinto T.L.F., Cicero S.M., and Forti V.A., 2007. Evaluation of moisture damage in soybean seeds using the image analysis technique. Braz. J. Seeds, 29: 31-38.
Poláčik J., Sitek T., Pospisil J., Snajdárek L., and Lisy M., 2021. Emission of fine particles from residential combustion of wood: comparison of automatic boiler, manual log feed stove and thermo-gravimetric analysis. J. Cleaner Prod., 279: 1-9.
Prado J.P., Krzyzanowski F.C., Martins C.C., and Vieira R.D., 2019. Physiological potential of soybean seeds and its relationship electrical conductivity. J. Seed Sci., 41: 407-415.
Putranto A., Chen X.D., Devahastin S., Xiao Z., and Webley P.A., 2011. Application of the reaction engineering approach (REA) for modeling intermittent drying under time-varying humidity and temperature. Chem. Eng. Sci., 66: 2149-2156.
Rahman A., and Cho B.K., 2016. Assessment of seed quality using non-destructive measurement techniques: a review. Seed Sci. Res., 26: 285-305.
Rathod L.R. and Pawar P.V., 2012. Antimicrobial activity of medicinal plant to control seed borne pathogen of soybean. Current Bot., 3: 10-12.
Razmjoo N., Sefidari H., and Strand M., 2016. Measurements of temperature and gas composition within the burning bed of wet woody residues in a 4 MW moving grate boiler. Fuel Proc. Technol., 152: 438-445.
Romdhana H., Bonazzi C., and Decloux M.E., 2015. Superheated steam drying: an overview of pilot and industrial dryers with a focus on energy Efficiency. Drying Technol., 33: 1255-1274.
Rosental L., Nonogaki H., and Fait A., 2014. Activation and regulation of primary metabolism during seed germination. Seed Sci. Res., 24: 1-15.
Rudobashta S., and Zueva G., 2016. Drying of seeds through oscillating infrared heating, Drying Technol., 34: 505-515.
Salimi Z., and Boelt B., 2019. Classification of processing damage in sugar beet (Beta vulgaris) seeds by multispectral image analysis. Sensors 19: 1-9.
Santos C.M.R., Menezes N.L., and Vilela F.A., 2004. Physiological and biochemical changes in artificially aged bean seeds. Braz. J. Seeds, 26: 110-119.
Saux M., Bleys B., André T., Baily C., and Bouteau H.E.M.A., 2020. Correlative study of sunflower seed vigor components as related to genetic background. Plant 9: 1-13.
Scariot M.A., Tiburski G., Reichert Junior F.W., Radunz L.L., and Meneguzzo M.R., 2017. Moisture content at harvest and drying temperature on bean seed quality. Pesq. Agrop. Trop., 47: 93-101.
Sdayria A., Ouledsaad F., Sghaier J., Nissinen A., Vauhkonen M., and Elcafsi A., 2015. In-line monitoring of drying kinetics of a fixed bed using an electrical imaging technique. Drying Technol., 33: 941-951.
Serowik M., Figiel A., Nejman M., Pudlo A., Chorazyk D., Kopec W., Rychlicka J., 2018. Drying characteristics and properties of microwave − Assisted spouted bed dried semi-refined carrageenan. J. Food Eng., 221: 20-18.
Sehrawat R., Nema P., and Kaur B.P., 2016. Effect of superheated steam drying on properties of foodstuffs and kinetic modeling. Innov. Food Sci. Emerg. Technol., 34: 285-301.
Shatters R.G., Abdelghany A., Elbagoury O., and West S.H., 1994. Soybean seed deterioration and response to osmotic priming: changes in specific enzyme activities in extracts from dry and germinating seeds. Seed Sci. Res., 4: 33-41.
Silva J.D., Lopes R.P., Vitor D.G., and Donzeles S.M.L., 2014. Wood-fired oven for drying coffee and beans. Announcement Embrapa Technician, 5: 1-14.
Silva A.B.P., Danao M.G., Gates R.S., and Rausch K.D., 2018. Dry matter loss and chemical changes to soybeans at 14, 18, and 22% moisture and 30°C measured in a dynamic grain respiration system. ASABE Meeting Presentation, 1: 1-11.
Silva L.C.M., Resende O., Oliveira D.E.C., Ferreira Junior W.N., and Rodrigues G.B., 2019. Liquid diffusion during drying of sorghum grains under different conditions. Eng. Agric. 39: 737-743.
Silva W.P., Galvão I.B., Silva C.M.D.P.S., Aires J.E.F., and Figueiredo R.M.F., 2020. Empirical model for describing continuous and intermittent drying kinetics of apple pieces. Heat and Mass Transfer, 56: 1263-1274.
Smaniotto T.A.S., Resende O., Marçal K.A.F., Oliveira D.E.C., and Simon G.A., 2014. Physiological quality of soybean seeds stored under different conditions. Rev. Bras. Eng. Agric. Amb., 18: 446-453.
Snousy M.B.A., El-Deeb H.M., Badran K., and Khlil I.A.A., 2011. Suite of decision tree-based classification algorithms on cancer geneexpression data. Egypt. Inf. J., 12: 73-82 (2011).
Sorour H., and Toshitaka U., 2004a. Effect of changing temperature on the deterioration of soybeans. Biosyst. Eng. 87: 453-462.
Sorour H., and Uchino T., 2004b. The effect of storage condition on the respiration of soybean. J. Japanese Soci. Agric., 66: 66-74.
Souza G.F.M.V., Miranda R.F., Barroso M.A.S., 2015a. Soybean (Glycine max L. Merril) seed drying in fixed bed process heterogeneity and seed quality. Drying Technol., 33: 1779-1787.
Souza G.F.M.V., Miranda R.F., Lobato F.S., and Barrozo M.A.S., 2015b. Simultaneous heat and mass transfer in a fixed bed dryer. Appl. Therm. Eng., 90: 38-44.
Striugas N., Vorotinskiene L., Paulauskas R., Navakas R., Džiugys A., and Narbutas L., 2017. Estimating the fuel moisture content to control the reciprocating grate furnace firing wet woody biomass. Energy Conv. Manag., 149: 937-949.
Su Y., Zhang M., and Mujumdar A.S., 2015. Recent developments in smart drying technology. Drying Technol., 33: 260-276.
Tahir A.R., Neethirajan S., Jayas D.S., Shahin M.A., Symons S.J., and White N.D.G., 2007. Evaluation of the effect of moisture content on cereal grains by digital image analysis. Food Res. Intern., 40: 1140-1145.
Tefera T., Kanampiu F., Groote H., Hellin J., Mugo S., Kimenju S., Beyene Y., Boddupalli P.M., Shiferaw B., and Banziger M., 2011. The metal silo: an effective grain storage technology for reducing post-harvest insect and pathogen losses in maize while improving smallholder farmers’ food security in developing countries. Crop Prot., 30: 240-245.
Tekasakul P., Kumar A., Yuenyao C., Kirirat P., and Prateepchaikul G., 2017. Assessment of sensible heat storage and fuel utilization efficiency enhancement in rubber sheet drying. J. Energy Storage, 10: 67-74.
Teles H.F., Pires L.L., Cunha M.G., Santos F.P., and Neto A., 2013. Incidence of Sclerotinia sclerotiorum and the physical and physiological quality of soybean seeds based on processing stages. J. Seed Sci., 35: 409-418.
Verma M., Loha C., Sinhá A.N., and Chatterjee P.K., 2017. Drying of biomass for utilizing in co-firing with coal and its impact on environment – a review. Renew. Sustainable Energy Rev., 71: 732-741.
Vertucci C.W., and Roos E.E., 1993. Theoretical basis of protocols for seed storage II. The influence of temperature on optimal moisture levels. Seed Sci. Res., 3: 201-213.
Vieira B.G.T.L., Barbosa G.F., Barbosa R.M., and Vieira R.D., 2013. Structural changes in soybean seed coat due to harvest time and storage. J. Food, Agric. Environ., 11: 625-628. Barbosa/publication/235952167_Structural_changes_in_soybean_seed_coat_due_to_harvest_time_and_storage/links/00b49514af9b584dba000000/Structural-changes-in-soybean-seed-coat-due-to-harvest-time-and-storage.pdf.
Vitis M.D., Hay F.R., Dicjie J.B., Trivedi C., Choi J., and Fiegener R., 2020. Seed storage: maintaining seed viability and vigor for restoration use. Restoration Ecol., 28: 249-255.
Vorotinskienė L., Paulauskas R., Zakarauskas K., Navakas R., Skvorcinskiene R., Striugas N., 2020. Parameters influencing wet biofuel drying during combustion in grate furnaces. Fuel, 265: 1-10.
Walters C., 1998. Understanding the mechanisms and kinetics of seed aging. Seed Sci. Res., 8: 223-244.
Walters C., Ballesteros D., and Vertucci V.A., 2010. Structural mechanics of seed deterioration: standing the test of time. Plant Sci., 179: 565-573.
Wang J.A., Zhang O., Wei Y.W., Yang G.H., and Wei F.J., 2019. Integrated furnace for combustion/gasification of biomass fuel for tobacco curing. Waste and Biom. Valoriz. 10: 2037-2044.
Wijewardana C., Reddy K.R., and Bellaloui A., 2019. Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chem., 278: 92-100.
Williams S.B., Baributsa D., and Woloshuk C., 2014. Assessing purdue improved crop storage (PICS) bags to mitigate fungal growth and aflatoxin contamination. J. Stored Prod. Res., 59: 190-196.
Wójcik M., and Tejchman J., 2009. Modeling of shear localization during confined granular flow in silos within non-local hypoplasticity. Powder Technol., 192: 298-310.
Xia Y., Xu Y., Jiangbo L., Zhang C., and Fan S., 2019. Recent advances in emerging techniques for non-destructive detection of seed viability: A review. Artif. Intell. Agric., 1: 35-47.
Yang Y., Rotter M., Ooi J., and Wang Y., 2011a. Flow channel boundaries in silos. Chem. Eng. Technol., 34: 1295-1302.
Yang Y., Rotter M., Ooi J., and Wang Y., 2011b. Numerical analysis of silo behavior using non-coaxial models. Chem. Eng. Sci., 66: 1715-1727.
Yang H., Gao J., Yang A., and Chen H., 2015. The ultrasound-treated soybean seeds improve edibility and nutritional quality of soybean sprouts. Food Res. Intern., 77: 704-710.
Zhu Z., Yang Z., and Wang F., 2016. Experimental research on intermittent heat pump drying with constant and time-variant intermittency ratio. Drying Technol., 34: 1630-1640.
Ziegler V., Vanier N.L., Ferreira C.D., Paraginski R.T., Monks J.L.F., and Elias M.C., 2016. Changes in the bioactive compounds content of soybean as a function of grain moisture content and temperature during long‐term storage. J. Food Sci., 81: 762-768.
Zuchi J., França-Neto J.B., Sediyama C.S., Lacerda Filho A.F., and Reis M.S., 2013. Physiological quality of dynamically cooled and stored soybean seeds. J. Seed Sci., 35: 353-360.