Soil respiration, root traits and dry matter yield of sorghum (Sorghum bicolor L.) as affected by biochar application under different cropping patterns and irrigation method
More details
Hide details
Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran, P.O. Box: 14778-93855
Department of Agronomy, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran, P.O. Box: 61349-37333
Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, Iran, P.O. Box: 31499-68111
Mojtaba Alavifazel   

Departments of Agronomy, Ahvaz Branch, Islamic Azad University, 61349-37333, Ahvaz, Iran
Final revision date: 2020-11-18
Acceptance date: 2020-11-23
Publication date: 2020-12-21
Int. Agrophys. 2020, 34(4): 495–502
This study aimed to investigate the effect of alternate furrow irrigation accompanied by biochar application within different cropping patterns on soil respiration and root traits such as root dry weight and root volume associated with the dry matter yield of sorghum (Sorghum bicolor L.) over a two-year period (2017 – 2018). The treatments consisted of three irrigation methods, which included every furrow irrigation, fixed furrow irrigation and alternate furrow irrigation and two cropping patterns including one-row, two-rows and three levels of biochar application including 0, 6 and 12 t ha-1. Different irrigation levels had a significant effect on root morphological indices, soil respiration, and the dry matter of forage yield. Biochar application showed a significant influence on soil respiration, as the highest soil respiration was observed in the B2 and B1 treatments (0.173 and 0.171 µmol C g-1 soil h-1, respectively), in contrast, the least was observed in the control treatment B0 (0.168 µmol C g-1 soil h-1). Biochar application had a positive effect on root dry weight, root volume and dry matter yield due to the prevention of severe moisture loss and further yield loss.
Afshari M., Naderi A., Mojadam M., Lack S., and Alavifazel M., 2020. Zinc and iron-mediated alleviation water deficiency of maize by modulating antioxidant metabolism. Not. Bot. Hort. Agrobot., 48, 989-1004.
Abel S., Peters A., Trinks S., Schonsky H., Facklam M., and Wessolek G., 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 203, 183-191.
Abiven S., Hund A., Martinsen V., and Cornelissen G., 2015. Biochar amendment increases maize root surface areas and branching: a shovelomics study in Zambia. Plant Soil, 395, 45-55.
Akpa S.I.C., Odeh I.O.A., and Bishop T.F.A., 2014. Digital mapping of soil particle – size fractions for Nigeria. Soil Sci. Soc. Am. J., 78, 1953-1966.
Amendola C., Montagnoli A., Terzaghi M., Trupiano D., Oliva F., Baronti S., Miglietta F., Chiatante D., and Scippa G.S., 2017. Short-term effects of biochar on grapevine fine root dynamics and arbuscular mycorrhizae production. Agric. Ecosyst. Environ., 239, 236-245.
Ardakani M.R., Pietsch G., Moghaddam A., Raza A., and Friedel J.K., 2009. Response of root properties to tripartite symbiosis between lucerne (Medicago sativa L.), rhizobia and mycorrhiza under dry organic farming conditions. Am. J. Agric. Biol. Sci., 4, 266-277. https:// doi: 10.3844/ajabssp.2009.266.277.
Bafkar A., Ghamarniya H., and Taheri Tizro A., 2017. Principles of general Irrigation. Kermanshah, Iran. 23-27. ISBN: 978-600-393-018-6.
Blaney H.F. and Criddle W.D., 1964. Determining water requirements for settling water disputes. Natural. Res J., 4(1), 29-41.
Borrell A.K., Mullet J.E., George-Jaeggli B., van Oosterom E.J., Hammer G.L., Klein E., and Jordan D.R., 2014. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J. Exp. Bot., 63, 6251-6263. doi:10.1093/jxb/eru232.
Brennan A., Jiménez E.M., Puschenreiter M., Alburquerque J.A., and Switzer C., 2014. Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant Soil, 379, 351-360. doi: 10.1007/s11104-014-2074-0.
Buss W., Kammann C., and Koyro H.W., 2012. Biochar reduces copper toxicity in Chenopodium quinoa wild in a sandy soil. J. Environ Quality, 40, 1157-1165.
Chai Q., Gan Y., Turner N.C., Zhang R.Z., Yang C., Niu Y., and Siddique K.H.M., 2014. Water-saving innovations in Chinese agriculture. Adv. Agron., 126,147-197. doi:10.1016/B978-0-12-800132-5.00002-X.
Chimungu J.G., Brown K.M., and Lynch J.P., 2014. Large root cortical cell size improves drought tolerance in maize (Zea mays L.). Plant Physiol., 166, 1943-1955.
Cornelissen G., Martinsen V., Shitumbanuma V., Alling V., Breedveld G., Rutherford D., Sparrevik M., Hale S., Obia A., and Mulder J., 2013. Biochar effect on maize yield and soil characteristics in five conservation-farming sites in Zambia. Agronomy, 3, 256-274.
Cox W.J., Hanchar J.J., Knoblauch W.A., and Cherney J.H., 2006. Growth, yield, quality and economics of cron silage under different row spacings. J. Agron., 98, 163-167.
Deenik J.L., McClellan T., Uehara G., Antal M.J., and Campbell S., 2010. Charcoal volatile matter content influences plant growth and soil nitrogen transformation. Soil Sci. Soc. Am. J., 74, 1259-70.
Forouzani M. and Karami E., 2011. Agricultural water poverty index and sustainability. Agron. Sustain. Dev., 31, 415-432. doi:10.1051/agro/2010026.
Gong J.R., Xu S., Wang Y., Luo Q., Liu M., and Zhang W., 2015. Effect of irrigation on the soil respiration of constructed grasslands in Inner Mongolia, China. Plant Soil, 395, 159-172. doi 10.1007/s11104-015-2534-1.
He X., Du Z., Wang Y., Lu N., and Zhang Q., 2016. Sensitivity of soil respiration to soil temperature decreased under deep biochar amended soils in temperate croplands. Appl. Soil Ecol., 108, 204-210.
Hopkins D.W., 2008. Carbon mineralization. In: Soil sampling and methods of analysis (Eds M.R. Carter, E.G. Gregorich). CRC Press, USA.
Hoseinzade H., Ardakani M.R., Shahdi A., Asadi Rahmani H., Noormohammadi G., and Miransari M., 2016. Rice (Oryza sativa L.) nutrient management using mycorrhizal fungi and endophytic Herbaspirillum seropedicae. J. Integr. Agri., 15, 1385-1394.
Jeffery S., Meinders M.B.J., Stoof C.R., Bezemer T., van de Voorde T.F.J., Mommer L., and van Groenigen J.W., 2015. Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma, 252, 47-54.
Jiang H., Deng Q., Zhou G., Hui D., Zhang D., Liu S., and Chu G., 2013. Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China. Biogeosciences, 10, 3963-3982. doi:10.5194/bg-10-3963-2013.
Kang S.Z. and Zhang J.H., 2004. Controlled alternate partial rootzone irrigation: Its physiological consequences and impact on water use efficiency. J. Exp. Bot., 55, 2437-2446.
Kurt C., Bakal H., Gulloglu L., and Arioglu H., 2017. The effect of twin row planting pattern and plant population on yield and yield components of peanut (Arachis hypogaea L.) at main crop planting in cukurova region of Turkey. Turk. J. Field Crops, 22, 24-31.
Liu H., Wang X., Wang D., Zou Z., and Liang Z., 2011. Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind. Crops Prod., 33, 84-88.
Liu P., Yin L.N., Deng X.P., Wang S.W., Tanaka K., and Zhang S.Q., 2014. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J. Exp. Bot., 65, 4747-4756. doi: 10.1093/jxb/eru220.
Liu X., Zheng J., Zhang D., Cheng K., Zhou H., Zhang A., Li L., Joseph S., Smith P., Crowley D., Kuzyakov Y., and Pan G., 2016. Biochar has no effect on soil respiration across Chinese agricultural soils. Sci. Total Environ., 554-555, 259-265.
Ma N., Zhang L., Zhang Y., Yang L., Yu C., Tin G., Diane T.A., and Ma X., 2016. Biochar improves soil aggregate stability and water availability in a mollisol after three years of field application. PLOS One, 11(5), 1-10.
Masto R.E., Kumar S., Rout T.K., Sarkar P., George J., and Ram L.C., 2013. Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena, 111, 64-7.
Moosavi S.A., Shokuhfar A., Lak S., Mojaddam M., and Alavifazel M., 2020. Integrated application of biochar and bio-fertilizer improves yield and yield components of cowpea under water-deficient stress. Ital. J. Agron., 15, 94-101.
Moslemi Z., Habibi D., Asgharzadeh A., Ardakani M.R., Mohammadi A., and Sakari A., 2011. Effects of super absorbent polymer and plant growth promoting rhizobacteria on yield and yield components of maize under drought stress and normal conditions. Afr. J. Agric. Res., 6, 4471-4476. https:// doi: 10.5897/AJAR10.462.
Mutava R.N, Prasad P.V.V., Tuinstra M.R., Kofoid K.D., and Yu J., 2011. Characterization of sorghum genotypes for traits related to drought tolerance. Field Crop Res., 123,10-18.
Obia A., Mulder J., Martinsen V., Cornelissen G., and Børresen T., 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Till. Res., 155, 35-44.
Prasad P.V.V., Pisipati S.R., Momcilovic I., and Ristic Z., 2011. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF‐Tu expression in spring wheat. J. Agron. Crop Sci., 931-2250.
Randhawa M.S., Maqsood M., Shehzad M.A., Chatta M.U., Chatta M.B., Nawaz F., Yasin S., Abbas T., Nawaz M.M., Khan R.D., and Zulfiqar U., 2017. Light interception, radiation use efficiency and biomass accumulation response of maize to integrated nutrient management under drought stress conditions. Turk. J. Field Crops, 221, 134-142.
Sagrilo E., Jeffery S., Hoffland E., and Kuyper T.W., 2014. Emission of CO2 from biochar amended soils and implications for soil organic carbon. GCB Bioenergy, 7, 1294-1304.
Samarbakhsh S., Rejali F., Ardakani M.R., Nejad F.P., and Miransari M., 2009. The combined effects of fungicides and arbuscular Mycorrhiza on corn (Zea mays L.) growth and yield under field conditions. J. Biol. Sci., 9, 372-376. doi:10.3923/jbs.2009.372.376.
Sun C.X., Chen X., Cao M.M., Li M.Q., and Zhang Y.L., 2017. Growth and metabolic responses of maize roots to straw biochar application at different rates. Plant Soil, doi: 10.1007/s11104-017-3229-6.
Sutka M., Li G., Boudet J., Boursiac Y., Doumas P., and Maurel C., 2011. Natural variation of root hydraulics in arabidopsis grown in normal and salt-stressed conditions. Plant Physiol, 155, 1264-1276. doi:
Van Zwieten L., Kimber S., Morris S., Chan K.Y., Downie A., Rust J., Joseph S., and Cowie A., 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil, 327, 235-246. doi.10.1007/s11104-009-0050-x.
Wu Y., Du T., Li F., Li S., Ding R., and Tong L., 2015. Quantification of maize water uptake from different layers and root zones under alternate furrow irrigation using stable oxygen isotope. Agric. Water Manag., 168, 35-44.
Xiao Q., Zhu L.X., Zhang H.P., Li X.Y., Shen Y.F., and Li S.Q., 2016. Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth. Crop Pasture Sci., 67, 495-507.
Xiao Y., Zhang J., Jia T.T., Pang X., and Guo Z.G., 2015. Effects of alternate furrow irrigation on the biomass and quality of alfalfa (Medicago sativa). Agric. Water Manag., 161, 147-154.
Zhang A., Liu Y., Pan G., Hussain Q., Li L., Zheng J., and Zhang X., 2012. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from from central China plain. Plant Soil, 351, 263-275.doi. 10.1007/s11104-011-0957-x.