Spatial variability of soil organic matter content in Eastern Croatia assessed using different interpolation methods
More details
Hide details
Faculty of Agriculture in Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
Acceptance date: 2018-08-28
Publication date: 2019-02-13
Int. Agrophys. 2019, 33(1): 31-39
Soil organic matter plays a crucial role in soil health and represents one of the key functions for determining soil suitability for crop production. Recently, intensive agricultu- ral production and climatic changes have led to a decline in organic matter level in soils. This paper is to provide the most accurate spatial predictor using different interpolation methods in order to evaluate in detail the status of organic matter in agricultural soils in the Osijek-Baranja County, Croatia. We applied three different interpolation methods, including inverse distance weighting, ordinary kriging and empirical Bayesian kriging. A total number of 9099 soil samples from 0-30 cm layer were compiled and analysed in the laboratory. The average value of soil organic matter in the study area was 2.66% with moderate variability (CV = 30.62%). The best fit variogram model is exponential in the direction of 20 and its spatial variability indicates that soil organic matter varies widely under pedogenetic and soil management practices. Empirical Bayesian kriging method was the most precise (RMSE = 0.457), followed by ordinary kriging (RMSE = 0.466) and inverse distance weighting (RMSE = 0.476). The investigated area shows a heterogeneous spatial pattern of soil organic matter content, with levels below 3% found mostly in western and south-western parts of county.
Adhikary P.P., Dash J., Bej R., and Chandrasekaran H., 2011. Indicator and probability kriging methods for delineating Cu, Fe, and Mn contamination in groundwater of Najafgarh Block, Delhi, India. Environ. Monit. Assess., 176, 663-676.
Bašić F., Bogunović M., Božić M., Husnjak S., Jurić I., Kisić I., Mesić M., Mirošević N., Romić D., and Žugec I., 2007. The regionalisation of Croatian agriculture. Agric Conspec Sci., 72, 27-38.
Beguin J., Fuglstad G.A., Mansuy N., and Paré D., 2017. Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches. Geoderma, 306, 195-205.
Bilandzija N., Voca N., Jelcic B., Jurisic V., Matin A., Grubor M., and Kricka T., 2018. Evaluation of Croatian agricultural solid biomass energy potential. Renewable Sustainable Energy Reviews, 93, 225-230.
Bogunovic I., Kisic I., Mesic M., Percin A., Zgorelec Z., Bilandžija D., Jonjic A., and Pereira P., 2017a. Reducing sampling intensity in order to investigate spatial variability of soil pH, organic matter and available phosphorus using co-kriging techniques. A case study of acid soils in Eastern Croatia. Archives of Agronomy Soil Sci., 63, 1852-1863.
Bogunovic I., Pereira P., and Brevik E.C., 2017b. Spatial distribution of soil chemical properties in an organic farm in Croatia. Science Total Environ., 584, 535-545.
Bogunovic I., Mesic M., Zgorelec Z., Jurisic A., and Bilandzija D., 2014. Spatial variation of soil nutrients on sandy-loam soil. Soil Till Res., 144, 174-183.
Bogunovic I., Pereira P., Kisic I., Sajko K., and Sraka M., 2018. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena, 160, 376-384.
Bogunović M., Vidaček Ć., Racz Z., Husnjak S., and Sraka M., 1996. Soil map of Croatia at the scale 1: 300 000. Department of Soil Science, Faculty of Agriculture, University of Zagreb, Croatia.
Bot A. and Benites J., 2005. The importance of soil organic matter – Key to drought-resistant food and production. Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy p 80.
Busari M.A., Kukal S.S., Kaur A., Bhatt R., and Dulazi A.A., 2015. Conservation tillage impacts on soil, crop and the environment. Int Soil Water Conserv., 3, 1-11.
Box G.E. and Cox D.R., 1964. An analysis of transformations. J. Royal Statistical Soc., B, Methodological, 211-252.
Cambardella C.A., Moorman T.B., Novak J.M., Parkin T.B., Karlen D.L., Turco R.F., and Konopka A.E., 1994. Field-scale variability of soil properties in Central Iowa Soils. Soil Sci. Soc. Am. J., 58, 1501-1511.
Ceddia M.B., Villela A.L.O., Pinheiro É.F.M., and Wendroth O., 2015. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil. Sci. Total Environ., 526, 58-69.
Dai F., Zhou Q., Lv Z., Wang X., and Liu G., 2014. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol. Indic, 45, 184-194.
Durán Zuazo V.H., Rodríguez Pleguezuelo C.R., Cuadros Tavira S., and Francia Martínez J.R., 2014. Linking soil organic carbon stocks to land-use types in a mediterranean agroforestry landscape. J. Agric. Sci. Techn., 16, 667-679.
Đurđević B., 2014. Practicum in Plant Nutrition (in Croatian). Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
Đurđević B., Vukadinović V., Bertić B., Jug I., Vukadinović V., Jurišić M., Dolijanović Ž., and Andrijačić M., 2011. Liming of acid soils in Osijek-Baranja County. J. Agric. Sci., 56, 187-195.
Eglin T., Walter C., Nys C., Follain S., Forgeard F., Legout A., and Squividant H., 2008. Influence of waterlogging on carbon stock variability at hillslope scale in a beech forest (Fougères forest – West France). Ann. for Sci., 65, 1-10.
Esri R., 2011. ArcGIS desktop: release 10. Environmental Systems Research Institute, CA.
Fabijańczyk P., Zawadzki J., and Magiera T., 2017. Magnetometric assessment of soil contamination in problematic area using empirical Bayesian and indicator kriging: A case study in Upper Silesia, Poland. Geoderma, 308, 69-77.
FAO and ITPS, 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy pp 50-75.
Farquharson R.J., Schwenke G.D., and Mullen J.D., 2003. Should we manage soil organic carbon in Vertosols in the northern grains region of Australia? Aust. J. Exp. Agr., 43, 261-270.
Fotheringham S. and Rogerson P. (Eds), 2013. Spatial analysis and GIS. CRC Press, city, country.
Gajda M.A., Czyž A.E., and Dexter R.A., 2016. Effects of long-term use of different farming systems on some physical, chemical and microbiological parameters of soil quality. Int. Agrophys., 30, 165-172.
Gong G., Mattevada S., and O’Bryant S.E., 2014. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ Res, 130, 59-69.
Hengl T., Heuvelink G.B. and Stein A., 2004. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120, 75-93.
Jiang H.L., Liu G.S, Liu S.D., Li E.H., Wang R., Yang Y.F. and Hu H.C., 2012. Delineation of site-specific management zones based on soil properties for a hillside field in central China. Arch Agron Soil Sci. 58,1075–1090.
Jones R.J.A., Hiederer R., Rusco E. and Montanarella L., 2005. Estimating organic carbon in the soils of Europe for policy support. Eur. J. Soil Sci., 56, 655-671.
Jug D., Jug I., Brozović B., Vukadinović V., Stipešević B. and Đurđević B., 2018. The role of conservation agriculture in mitigation and adaptation to climate change. Poljoprivreda, 24, 35-44.
Jug I., Jug D., Sabo M., Stipešević B. and Stošić M., 2011. Winter wheat yield and yield components as affected by soil tillage systems. Turk J Agric For, 35, 1-7.
Jug D., Stipešević B., Jug I., Šamota D. and Vukadinović V., 2007. Influence of different soil tillage systems on yield of maize. Cereal Res. Commun., 35, 557-560.
Kerry R. and Oliver M.A., 2004. Average variograms to guide soil sampling. Int J Appl Earth Obs, 5 (4), 307-325.
Kerry R., and Oliver M.A., 2007. Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma, 140, 383-396.
Kravchenko Y.S., Chen Q., Liu X., Herbert S.J. and Zhang X., 2016. Conservation practices and management in Ukrainian mollisols. J. Agric. Sci. Tech., 18, 845-854.
Krivoruchko K., 2012. Empirical Bayesian Kriging. ArcUser Fall 2012. Accessed 15 December 2012
Lehmann J.K, 2015. The contentious nature of soil organic matter. Nature, 528, 60-68.
Liu X., Herbert S.J., Hashemi A.M., Zhang X. and Ding G., 2006. Effects of agricultural management on soil organic matter and carbon transformation – a review. Plant Soil Environ., 52, 531-543.
Liu X.B., Zhang X.Y., Wang Y.X., Sui Y.Y., Zhang S.L., Herbert S.J. and Ding G., 2010. Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ., 56, 87-97.
Liu Z., Zhou W., Shen J., He P., Lei Q. and Liang G., 2014. A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields in South China. Geoderma, 235, 39-47.
Lipiec J. and Usowicz B., 2018. Spatial relationships among cereal yields and selected soil physical and chemical properties. Sci. Total Environ., 633, 1579-1590.
Loveland P. and Webb J., 2003. Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil Till. Res, 70, 1-18.
Mabit L. and Bernard C., 2010. Spatial distribution and content of soil organic matter in an agricultural field in Eastern Canada, as estimated from geostatistical tools. Earth Surf Process Landforms, 35, 278-283.
Mann L., Tolbert V. and Cushman J., 2002. Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion. Agric. Ecosyst. Environ., 89, 149-166.
Marchetti A., Piccini C., Francaviglia R. and Mabit L., 2012. Spatial Distribution of Soil Organic Matter Using Geostatistics: A Key Indicator to Assess Soil Degradation Status in Central Italy. Pedosphere, 22, 230-242.
Milne E., Adamat R.A., Batjes N.H., Bernoux M., Bhattacharyya T., Cerri C.C., Cerri C.E.P., Coleman K., Easter M. and Falloon P., 2007. National and sub-national assessments of soil organic carbon stocks and changes: the GEFSOC modelling system. Agric. Ecosyst. Environ., 122, 3-12.
Mirzaei R. and Sakizadeh M., 2016. Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Environ. Sci. Pollut. Res., 23, 2758-2769.
Nelson D.W. and Sommers L.E., 1982. Total carbon, organic carbon, and organic matter. Part II. Chemical and Microbiological Properties. In: Methods of Soil Analysis 2nd edn (Eds A. L. Page, R. H. Miller, D. R. Keeney). American Society of Agronomy, Madison, WI, USA.
Nielsen D.R. and Bouma J., 1985. Soil Spatial Variability. Pudoc, Wageningen, The Netherland.
Osborne J.W., 2010. Improving your data transformations: Applying the Box-Cox transformation. Practical Assessment, Research Evaluation, 15, 1-9.
Paltineanu C., Tanasescu N. and Chitu E., 2016. Pattern of soil physical properties in intensive plum and apple orchards on medium and course textured soils. Soil Till. Res., 163, 80-88.
Pribyl W.D., 2010. A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156, 75-83.
Reza S.K., Nayak D.C., Chattopadhyay T., Mukhopadhyay S., Singh S.K. and Srinivasan R., 2016. Spatial distribution of soil physical properties of alluvial soils: a geostatistical approach. Arch Agron Soil Sci., 62, 972-981.
Robinson T.P. and Metternicht G., 2006. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput Electron Agric., 50, 97-108.
Rojas R.V., Achouri M., Maroulis J. and Caon L., 2016. Healthy soils: a prerequisite for sustainable food security. Environ. Earth Sci., 75, 180, 1-10.
Samsonova V.P., Blagoveshchenskii Y.N. and Meshalkina Y.L., 2017. Use of empirical Bayesian kriging for revealing heterogeneities in the distribution of organic carbon on agricultural lands. Eurasian Soil Sci., 50, 305-311.
Schueller J.K., 2010. Geostatistics and Precision Agriculture: A Way Forward, in Margaret AO: Geostatistical Applications for Precision Agriculture. Springer, Dordrecht, Heidelberg, London, New York.
Sharma P., Shukla M.K. and Mexal J.G., 2011. Spatial variability of soil properties in agricultural fields of Southern New Mexico. Soil Sci., 176, 288-302.
Shrestha B.M., Singh B.R., Forte C. and Certini G., 2015. Long-term effects of tillage, nutrient application and crop rotation on soil organic matter quality assessed by NMR spectroscopy. Soil Use Manag., 31, 358-366.
Vázquez C., Iriarte A.G., Merlo C., Abril A., Kowaljow E. and Meriles J.M., 2016. Land use impact on chemical and spectroscopical characteristics of soil organic matter in an arid ecosystem. Environ. Earth Sci., 75, 883, 1-13.
Vukadinović V., Vukadinović V., Jug I., Kraljičak Ž., Jug D. and Đurđević B., 2014. Interpretive base model of land resources of the Osijek Baranja County. Agron. J., 76, 29-43.
Webster R. and Oliver M.A., 2001. Geostatistics for Environmental Scientists. John Wiley and Sons, Brisbane, Australia.
Whitmore A.P., Kirk G.J.D. and Rawlins B.G., 2015. Technologies for increasing carbon storage in soil to mitigate climate change. Soil Use Manag., 31, 62-71.
Xie Y., Chen T.B., Lei M., Yang J., Guo Q.J, Song B. and Zhou X.Y., 2011. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and un-certainty analysis. Chemosphere, 82, 468-476.
Journals System - logo
Scroll to top