RESEARCH PAPER
Effect of extraction methods on physicochemical and antioxidant properties of oil extracted from plum (Prunus domestica L.) seeds
 
More details
Hide details
1
Institute of Human Nutrition and Agriculture, University College of Applied Sciences in Chełm, Wojsławicka 8B, 22-100 Chełm, Poland
 
 
Final revision date: 2025-08-15
 
 
Acceptance date: 2025-09-12
 
 
Publication date: 2025-11-04
 
 
Corresponding author
Małgorzata Stryjecka   

Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Poland
 
 
Int. Agrophys. 2026, 40(1): 13-23
 
HIGHLIGHTS
  • Use of waste from the fruit and vegetable industry
  • The best extraction in supercritical CO2
  • Plum oil a source of bioactive substances
KEYWORDS
TOPICS
ABSTRACT
This study investigated the possibility of using plum (Prunus domestica L.) seeds, i.e. residues of fruit processing, to extract edible oil. Three extraction methods were used in the study: chemical extraction (n-hexane), cold pressing, and supercritical CO2 extraction. The products obtained using these methods were evaluated in terms of peroxide and acid values, the content of tocopherols, phytosterols and polyphenols, and antioxidant properties (DPPH and ABTS assays). The plum kernel oils were rich in oleic acid. The dominant tocopherol in all variants was δ-tocopherol, with the highest proportion in the SFT (supercritical CO2 extraction) oil. β-sitosterol and Δ5-avenasterol were the major phytosterols in the oils. The SFT oil had the highest content of total phenols and the strongest antioxidant properties, which was confirmed by the DPPH and ABTS assays. The results suggest that plum kernels can be a potential source of oil for the oil and fat industry. The oil obtained by supercritical CO2 extraction showed the best fatty acid composition, the highest tocopherol content, and the best antioxidant properties (DPPH and ABTS assays). The use of this type of fruit processing waste contributes to the reduction of waste and supports the circular economy approach.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
REFERENCES (48)
1.
AOAC, 2006. Official Methods of Analysis. 18th Ed. Association of Official Analytical Chemists, Gaithersburgs, MD.
 
2.
AOAC 2006, No. 984.13 Protein (crude) in animal feed and pet food. Copper catalyst Kjeldahl method.
 
3.
AOAC 2006, No. 920.39. Fat (crude) or ether extract in animal feed.
 
4.
AOAC 2006, No. 923.03. Ash of flour, direct method.
 
5.
AOAC 2006, No. 962.09. Fibre crude in animal feed and pet food.
 
6.
Abdulkarim S.M., Long K., Lai O.M., Muhammad S.K.S., Ghazali H.M., 2007. Frying quality and stability of high-oleic Moruinga oleifera seeds oil in comparison with other vegetable oils. Food Chem. 105(4), 1382-1389. https://doi.org/10.1016/j.food....
 
7.
American Oil Chemists’ Society (AOCS), 1997. Official and Recommended Practices of the AOCS. 7th Edition, AOCS Press Publication, Champaign.
 
8.
Anwar, F., Manzoor, M., Bukhari, I.H., Aladedunye, F., 2014. Physico‐chemical attributes of fruit seed oils from different varieties of peach and plum. J. Adv. Biol. 4, 385-390. https://doi.org/10.24297/jab.v....
 
9.
Anwar F., Przybylski R., Rudzińska M., Gruczyńska E., Bain J., 2008. Fatty acid, tocopherol and sterol compositions of Canadian prairie fruit seed lipids. J. Am. Oil Chem. Soc. 85, 953-959. https://doi.org/10.1007/s11746....
 
10.
Bjelica, M., Vujasinović, V., Rabrenović, B., Dimić, S., 2019. Some chemical characteristics and oxidative stability of cold pressed grape seed oils obtained from different winery waste. Eur. J. Lipid Sci. Technol. 121, 1800416. https://doi.org/10.1002/ejlt.2....
 
11.
Bolarinwa, I.F., Orfila, C., Morgan, M.R.A., 2014. Amygdalin content of seeds, kernels and food products commercially. Food Chem. 152, 133-139. https://doi.org/10.1016/j.food....
 
12.
Bondet, V., Brand-Williams, W., Berset, C., 1997. Kinetics and mechanisms of antioxidant activity using the DPPH.free radical method. LWT – Food Science Technol. 30, 6, 609-615. https://doi.org/10.1006/fstl.1....
 
13.
Bordoni, L., Fedeli, D., Nasuti, C., Maggi, F., Papa, F., Wabitsch, M., et al., 2019. Antioxidant and anti‐inflammatory properties of Nigella sativa oil in human pre‐adipocytes. Antioxidants 8, 51. https://doi.org/10.3390/antiox....
 
14.
Chen, Z.-Y., Jiao, R., Ma, K.Y., 2008. Cholesterol-Lowering Nutraceuticals and Functional Foods. J. Agric. Food Chem. 56, 8761-8773. https://doi.org/10.1021/jf8015....
 
15.
Ćirković, A., Demin, M., Akâić, M.F., Rabrenović, B., 2023. Processing waste: bioactive components and antioxidant capacity of cold-pressed oils from some fruit seeds. Notulae Botanicae Horti. Agrobotanici Cluj-Napoca 51(3), 13241. http://dx.doi.org/10.15835/nbh....
 
16.
Dimzon, I.K.D., Valde, M.F., Santos, J.E.R., Garrovillas, M.J.M. Dejarme, H.M., Remollo, J.M.W., et al., 2011. Physico-chemical and microbiological parameters in the deterioration of virgin coconut oil. Philippine J. Sci. 140(1), 89-103. http://doi:10.9790/5736- 100903495441.
 
17.
Dulf, F.V., Vodnar, D.C., Socaciu, C., 2016. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chem. 209, 27-36. https://doi.org/10.1016/j.food....
 
18.
Firestone, D., 1994. Determination of the iodine value of oils and fats: summary of collaborative study. J. AOAC Int. 77, 3, 674-676, https://doi.org/10.1093/jaoac/....
 
19.
Fratianni, F., Ombra, M.N., d’Acierno, A., Cripriano, L., Nazzaro, F., 2018. Apricots: Biochemistry and functional properties. Curren Opinion in Food Science 19, 23-29. https://doi.org/10.1016/j.cofs....
 
20.
Folch, J., Lees, M., Stanley, G.H.S., 1957. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226: 497-509.
 
21.
García, M.C., González-García, E., Vásquez-Villanueva, R., Marina, M.L., 2016. Apricot and other seed stones: amygdalin content and the potential to obtain antioxidant, angiotensin I converting enzyme inhibitor and hypocholesterolemic peptides. Food Funct. 7(11), 4693-4701. https://doi.org/10.1039/C6FO01....
 
22.
Górnaś, P., Rudzińska, M., Soliven, A., 2017. Industrial by-products of plum Prunus domestica L. and Prunus cerasifera Ehrh. as potential biodiesel feedstock: Impact of variety. Ind. Crops Prod. 100, 77-84. http://dx.doi.org/10.1016/j.in....
 
23.
Gutfinger, T., 1981. Polyphenols in olive oils. J. Am. Oil Chemists Society 58, 966-968. https://doi.org/10.1007/BF0265....
 
24.
Hassanin M.M., 1999. Studies on non-tradition oils: detailed studies on different lipid profiles of some Rosaceae kernel oil. Fats and Oils 50, 379-384. https://doi.org/10.3989/gya.19....
 
25.
He, X.Y., Wu, L.J., Wang, W.W., Xie, P.J., Chen, Y.H., Wang, F., 2020. Amygdalin – A pharmacological and toxicological review. J. Ethnopharmacol. 254, 112717. http://doi: 10.1016/j.jep.2020.112717.
 
26.
Kiralan M., Kayahan M., Kiralan S.S., Ramadan M.F., 2018. Effect of thermal and photo oxidation on the stability of cold‑pressed plum and apricot kernel oils. Eur. Food Res. Technol. 244(1), 31-42. https://doi.org/10.1007/s00217....
 
27.
Ivanova, M., Hanganu, A., Dumitriu, R., Tociu, M., Ivanov, G., Stavarache, C., et al., 2022. Saponification value of fats and oils as determined from 1H NMR data: the case of dairy fats. Foods 1466. http://doi:10.3390/foods111014....
 
28.
Mafe, A.N., Büsselberg D., 2024. Impact of metabolites from foodborne pathogens on cancer. Foods 13(23), 3886, http://doi.org/10.3390/foods13....
 
29.
Matthäus, B., Özcan, M.M., 2009. Fatty acids and tocopherol contents of some Prunus spp. kernel oil. J. Food Lipids 16, 187-199. https://doi.org/10.1111/j.1745....
 
30.
Moreda, W., Pérez-Camino, M., Cert, A., 2001. Gas and liquid chromatography of hydrocarbons in edible vegetable oils. J. Chromatogr. A, 936, 159-171. https://doi.org/10.1016/S0021-....
 
31.
Natić, M., Zagorac, D.D., Ćirić, I., Meland, M., Rabrenović B., Akšić, M.F., 2020. Cold pressed oils. Green Technology, Bioactive Compounds, Functionality, and Applications 637-658. http://doi:10.1016/C2018-0-031....
 
32.
Nwakodo, C.S., Udensi, E.A., Chukwu, M.N., 2018. Effect of processing methods and storage time on physical characteristics of palm oil. Res. J. Food Sci. Nutrition 3(5), 65-73. https://doi.org/10.31248/RJFSN....
 
33.
Re, R., Pellegrini, N., Proteggente A., Pannala A., Yang M., Rice-Evans C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol. Med. 26(9-10):1231-7. https://doi.org/10.1016/s0891-....
 
34.
Rodríguez-Blázquez, S., Gómez-Mejía, E., Rosales-Conrado, N., León-González, M.E., García-Sánchez, B., Miranda, R., 2023. Valorization of prunus seed oils: fatty acids composition and oxidative stability. Molecules 28, 7045. https://doi.org/10.3390/molecu....
 
35.
Rossell, J.B., 1991. Vegetable oil and fats. In: Analysis of Oilseeds, Fats and FattyFoods In: Rossell, J.B., and Pritchard, J.L.R. Eds. Elsevier Applied Science, New York, 261-328.
 
36.
Rudzińska, M., Kazuś, T., Wąsowicz, E., 2001. Sterols and their oxidized derivatives in refined and cold pressed seed oils. Oilseed Crops 22, 477-494.
 
37.
Savic, I., Ivana Savic Gajic I., Gajic, D., 2020. Physico‐chemical properties and oxidative stability of fixed oil from plum seeds (Prunus domestica Linn.). Biomolecules 10, 294; https://doi.org/10.3390/biom10....
 
38.
Senica, M., Stampar, F., Veberic, R., Mikulic-Petkovsek, M., 2017. Fruit seeds of the rosaceae family: A waste, new life, or a danger to human health. J. Agric. Food Chem. 65(48), 10621-10629. https://doi.org/10.1021/acs.ja....
 
39.
Sigeri, A., Nogala-Kalucka M., Lampart-Szczapa, E., 2008. The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J. Food Lipids 15, 137-149. http://dx.doi.org/10.1111/j.17....
 
40.
Tarapoulouzi, M., Agriopoulou, S., Koidis, A., Proestos, Ch., El Enshasy, H.A., Varzakas, T., 2022. Recent advances in analytical methods for the detection of olive oil oxidation status during storage along with chemometrics, authenticity and fraud studies. Biomolecules 25, 12(9): 1180. http://doi: 10.3390/biom12091180.
 
41.
Topp, B.L., Russel, D.M., Neumüller, M., Dalbo, M.A., Liu, W., 2012. Plum. Chapter 15. In: Badenes, M.L., Byrne, D.H., editors. Fruit Breeding. Springer 571-621. https://doi.org/10.1007/978-1-....
 
42.
Uluata, S., Özdemir, N., 2017. Evaluation of chemical characterization, antioxidant activity and oxidative stability of some waste seed oil. Turk. J. Agric. Food Sci. Technol. 5, 48-53. https://doi.org/10.24925/turja....
 
43.
Uluata, S., 2016. Effect of extraction method on biochemical properties and oxidative stability of apricot seed oil. Academic Food J. 14, 333-340.
 
44.
Veličković, D.T., Ristić, M.S., Karabegović, I.T., Stojičević, S.S., Nikolić, N.C., Lazić, M.L., 2016. Plum (Prunus domestica) and walnut (Juglans regia): volatiles and fatty oils. Adv. Technol. 5(1), 10-16. https://doi.org/10.5937/savteh....
 
45.
Vladić J., Gavarić A., Jokić S., Pavlović N., Moslavac T., Popović L., et al., 2020. Alternative to conventional edible oil sources: cold pressing and supercritical CO2 extraction of plum (Prunus domestica L.) kernel seed. Acta Chim. Slov. 67, 778-784. https://doi.org/10.17344/acsi.....
 
46.
Wrolstad, R.E., 2003. Analysis of tocopherols and tocotrienols. In: Current Protocols in Food Analytical Chemistry (CPFA), (Ed. R.E. Wrolstad), John Wiley Sons.
 
47.
Yu, X., van de Voort, F.R., Li, Z., Yu, T., 2007. Proximate composition of the apple seed and characterization of its oil. Int. J. Food Eng. 3(5). https://doi.org/10.2202/1556-3....
 
48.
Zhang, N., Li, Y., Wen, S., Sun, Y., Chen, J., Gao, Y., et al., 2021. Analytical methods for determining the peroxide value of edible oils: A mini-review. Food Chem. 358, 129834. https://doi.org/10.1016/j.food....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top