Suitable model for thin-layer drying of root vegetables and onion
More details
Hide details
Institute of Mechanical Engineering, Warsaw University of Life Sciences, Poland
Final revision date: 2019-10-29
Acceptance date: 2019-12-10
Publication date: 2020-01-15
Corresponding author
Krzysztof Górnicki   

Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164, 02–787, Warsaw, Poland
Int. Agrophys. 2020, 34(1): 79-86
Drying behaviour of carrot, parsley, and red beet roots and onion slices of 5 and 10 mm thickness was investigated in a convective dryer at the drying temperature of 50, 60, 70oC under natural convection conditions. The experimental drying data of vegetables slices obtained were fitted to five empirical thin-layer models: Lewis (Newton), Henderson and Pabis, Page, Modified Page, Wang and Singh. The effects of vegetable species, air drying temperature, and slice thickness on the model parameters were determined. Four statistical tools, namely, determination coefficient, root mean square error, reduced chi-square, and t-statistic method were applied to determine the fittings. The Page model with model parameters determined by summation equation and square type dependence for drying air temperature and rational one for slice thickness can be recommended as the most suitable (R2 = 0.9699, RMSE = 0.0587, χ2 = 0.0035, t-stat = 0.6739).
Aghbashlo M., Kianmehr M.H., Arabhosseini A., and Nazghelichi T., 2011. Modelling the carrot thin-layer drying in a semi-industrial continuous band dryer. Czech J. Food Sci., 29(5), 528-538.
Agrawal S.G. and Methekar R.N., 2017. Mathematical model for heat and mass transfer during convective drying of pumpkin. Food Bioprod. Process., 101, 68-73.
Alara O.R., Abdurahman N.H., and Olalere O.A., 2017. Mathematical modelling and morphological properties of thin layer oven drying of Vernonia amygdalina leaves. J. Saudi Soc. Agric. Sci., 18(3), 309-315.
Antal T., Kerekes B., Sikolya L., and Tarek M., 2015. Quality and drying characteristics of apple cubes subjected to combined drying (FD pre-drying and HAD finish-drying): Apple drying. J. Food Process. Preserv., 39(6), 994-1005.
Ashtiani S.-H.M., Salarikia A., and Golzarian M.R., 2017. Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments. Inf. Process. Agric., 4(2), 128-139.
Atalay H., Çoban M.T., and Kıncay O., 2017. Modeling of the drying process of apple slices: Application with a solar dryer and the thermal energy storage system. Energy, 134, 382-391.
Avhad M.R. and Marchetti J.M., 2016. Mathematical modelling of the drying kinetics of Hass avocado seeds. Ind. Crops Prod., 91, 76-87.
Azeez L., Adebisi S.A., Oyedeji A.O., Adetoro R.O., and Tijani K.O., 2017. Bioactive compounds’ contents, drying kinetics and mathematical modelling of tomato slices influenced by drying temperatures and time. J. Saudi Soc. Agric. Sci., 18(2), 120-126.
Barba A.A., d’Amore M., Rispoli M., Marra F., and Lamberti G., 2014. Microwave assisted drying of banana: Effects on reducing sugars and polyphenols contents. Czech J. Food Sci., 32(4), 369-375.
Bennamoun L., Khama R., and Léonard A., 2015. Convective drying of a single cherry tomato: Modeling and experimental study. Food Bioprod. Process., 94, 114-123.
Darvishi H., Hadi Khoshtaghaza M., Najafi G., and Zarein M., 2013. Characteristics of sunflower seed drying and microwave energy consumption. Int. Agrophys., 27(2), 127-132.
Dhanushkodi S., Wilson V.H., and Sudhakar K., 2017. Mathematical modeling of drying behavior of cashew in a solar biomass hybrid dryer. Resour.-Effic. Technol., 3(4), 359-364.
Doymaz I., 2009. Thin-layer drying of spinach leaves in a convective dryer. J. Food Process Eng., 32(1), 112-125.
Doymaz I., 2014. Suitability of thin-layer drying models for infrared drying of peach slices: Infrared Drying of Peach Slices. J. Food Process. Preserv., 38(6), 2232-2239.
Doymaz I., Kipcak A.S., and Piskin S., 2015. Characteristics of thin-layer infrared drying of green bean. Czech J. Food Sci., 33(1), 83-90.
Ertekin C. and Firat M.Z., 2017. A comprehensive review of thin-layer drying models used in agricultural products. Crit. Rev. Food Sci. Nutr., 57(4), 701-717.
Gazor H.R. and Mohsenimanesh A., 2010. Modelling the drying kinetics of canola in fluidised bed dryer. Czech J. Food Sci., 38(6), 531-537.
Giraudo A., Valentini N., Venturello A., Savorani F., Bertone E., Bonazzola G., Zeppa G., and Geobaldo F., 2018. Kinetic modeling of hazelnut drying: Effects of different cultivars and drying parameters. J. Food Process Eng., 41(1), e12632.
Górnicki K. and Kaleta A., 2007. Modelling convection drying of blanched parsley root slices. Biosyst. Eng., 97(1), 51-59.
Górnicki K., Kaleta A., Bryś A., and Winiczenko R., 2017. Modelling of drying curves of spruce, beech, willow and alder particles. Drv. Ind., 68(1), 11-16.
Hacıhafızoğlu O., Cihan A., and Kahveci K., 2008. Mathematical modelling of drying of thin layer rough rice. Food Bioprod. Process., 86(4), 268-275.
Henderson S.M. and Pabis S., 1961. Grain drying theory. I. Temperature effect on drying coefficient. J. Agric. Eng. Res., 6, 169-174.
Horwitz W. (Ed.), 2005. Official methods of analysis of AOAC International. AOAC Int.: Gaithersburg, MD, USA.
Hosseinabadi H.Z., Doosthoseini K., and Layeghi M., 2012. Drying kinetics of poplar (Populus Deltoides) wood particles by a convective thin layer dryer. Drv. Ind., 63(3), 169-176.
Jiang J., Dang L., Yuensin C., Tan H., Pan B., and Wei H., 2017. Simulation of microwave thin layer drying process by new theoretical model. Chem. Eng. Sci., 162, 69-76.
Junqueira J.R. de J., Corrêa J.L.G., and Ernesto D.B., 2017. Microwave, convective, and intermittent microwave-convective drying of pulsed vacuum osmodehydrated pumpkin slices. J. Food Process. Preserv., 41(6), e13250.
Kaleta A. and Górnicki K., 2010a. Evaluation of drying models of apple (var. McIntosh) dried in a convective dryer. Int. J. Food Sci. Technol., 45(5), 891-898.
Kaleta A. and Górnicki K., 2010b. Some remarks on evaluation of drying models of red beet particles. Energy Convers. Manag., 51(12), 2967-2978.
Kaleta A., Górnicki K., Winiczenko R., and Chojnacka A., 2013. Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer. Energy Convers. Manag., 67, 179-185.
Kowalski S.J. and Rybicki A., 2017. Ultrasound in wet biological materials subjected to drying. J. Food Eng., 212, 271-282.
Lewis W.K., 1921. The rate of drying of solid materials. Ind. Eng. Chem., 13(5), 427-432.
Lutovska M., Mitrevski V., Pavkov I., Babic M., Mijakovski V., Geramitcioski T., and Stamenkovic Z., 2017. Different methods of equilibrium moisture content determination. J. Process. Energy Agric., 21(2), 91-96.
Mahapatra A. and Tripathy P.P., 2018. Modeling and simulation of moisture transfer during solar drying of carrot slices. J. Food Process Eng., 41(8), e12909.
Mghazli S., Ouhammou M., Hidar N., Lahnine L., Idlimam A., and Mahrouz M., 2017. Drying characteristics and kinetics solar drying of Moroccan rosemary leaves. Renew. Energy, 108, 303-310.
Motevali A., Younji S., Chayjan R.A., Aghilinategh N., and Banakar A., 2013. Drying kinetics of dill leaves in a convective dryer. Int. Agrophys., 27(1), 39-47.
Omari A., Behroozi-Khazaei N., and Sharifian F., 2018. Drying kinetic and artificial neural network modeling of mushroom drying process in microwave-hot air dryer. J. Food Process Eng., 41(7), e12849.
Opalić M., Domitran Z., Komes D., Belščak A., Horžić D., and Karlović D., 2009. The effect of ultrasound pre-treatment and air-drying on the quality of dried apples. Czech J. Food Sci., 27(Special Issue 1), S297-S300.
Overhults D.G., White G.M., Hamilton H.E., and Ross I.J., 1973. Drying soybeans with heated air. Trans. ASAE, 16(1), 0112-0113.
Özdemir M.B., Aktaş M., Şevik S., and Khanlari A., 2017. Modeling of a convective-infrared kiwifruit drying process. Int. J. Hydrog. Energy, 42(28), 18005-18013.
Page G.E., 1949. Factors influencing the maximum rates of air drying shelled corn in thin layers. MSc. Thesis, Purdue University, ProQuest Dissertations Publ., West Lafayette, IN, USA.
Phoungchandang S. and Kongpim P., 2012. Modeling using a new thin-layer drying model and drying characteristics of sweet basil (Ocimum baslicum Linn.) using tray and heat pump-assisted dehumidified drying: drying characteristics. J. Food Process Eng., 35(6), 851-862.
Planinić M., Velić D., Tomas S., Bilić M., and Bucić A., 2005. Modelling of drying and rehydration of carrots using Peleg’s model. Eur. Food Res. Technol., 221(3-4), 446-451.
Rodríguez J., Clemente G., Sanjuán N., and Bon J., 2014. Modelling drying kinetics of thyme (Thymus vulgaris L.): Theoretical and empirical models, and neural networks. Food Sci. Technol. Int., 20(1), 13-22.
Sacilik K., Keskin R., and Elicin A.K., 2006. Mathematical modelling of solar tunnel drying of thin layer organic tomato. J. Food Eng., 73(3), 231-238.
Sánchez-Sáenz C.M., de Oliveira R.A., and Park K.J., 2015. HTST Pre-drying influence on vacuum drying kinetics and carrot slices quality parameters evaluation: Vacuum drying kinetics for carrot slices. J. Food Process. Preserv., 39(6), 1636-1646.
Shynkaryk M.V., Lebovka N.I., and Vorobiev E., 2008. Pulsed electric fields and temperature effects on drying and rehydration of red beetroots. Dry. Technol., 26(6), 695-704.
Stakić M. and Urošević T., 2011. Experimental study and simulation of vibrated fluidized bed drying. Chem. Eng. Process. Process Intensif., 50(4), 428-437.
Tekin Z.H., Başlar M., Karasu S., and Kilicli M., 2017. Dehydration of green beans using ultrasound-assisted vacuum drying as a novel technique: drying kinetics and quality parameters. J. Food Process. Preserv., 41(6), e13227.
Tian Y., Wu S., Zhao Y., Zhang Q., Huang J., and Zheng B., 2015. Drying characteristics and processing parameters for microwave-vacuum drying of kiwifruit (Actinidia deliciosa) slices: Microwave-vacuum drying of kiwifruit slices. J. Food Process. Preserv., 39(6), 2620-2629.
Wang G.V. and Singh R.P., 1978. A single layer drying equation for rough rice. In: Paper - American Society of Agricultural Engineers. ASAE, St Joseph, MI, USA.
Younis M., Abdelkarim D., and El-Abdein A.Z., 2018. Kinetics and mathematical modeling of infrared thin-layer drying of garlic slices. Saudi J. Biol. Sci., 25(2), 332-338.
Yu Y., Jin T.Z., and Xiao G., 2017. Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries. J. Food Process. Preserv., 41(6), e13303.
Journals System - logo
Scroll to top