RESEARCH PAPER
Tests and analyses on mechanical characteristics of dwarf-dense-early major cotton variety stalks
Rongqing Liang 1, 2  
,  
Xuegeng Chen 1, 2  
,  
Bingcheng Zhang 1, 2  
,  
Xiangbin Peng 1, 2  
,  
Hewei Meng 1, 2  
,  
Peng Jiang 1, 2  
,  
Jiali Li 1, 2  
,  
Pengfei Zhou 1, 2  
,  
Za Kan 1, 2  
 
 
More details
Hide details
1
College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China
2
Key Laboratory of Northwest Agricultural equipment, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
CORRESPONDING AUTHOR
Za Kan   

College of Mechanical and Electrical Engineering, Shihezi University, Beisi Road, 832000, Shihezi, China
Publication date: 2020-07-31
Final revision date: 2020-05-05
Acceptance date: 2020-05-18
 
Int. Agrophys. 2020, 34(3): 333–342
KEYWORDS
TOPICS
ABSTRACT
The influence of the variation in water content, sampling location and loading speed on the shearing and across-compression mechanical characteristics of dwarf-dense-early major cotton variety stalks was analysed. The second-order response models of the factors vs. the maximum shear force and critical across-compression failure force were built using the response surface methodology. Besides, the sampling location and water content have a significant influence over the maximum shear force and critical across-compression failure force, especially the sampling location. Both the maximum shear force and critical across-compression failure force reach a theoretical maximum when the water content is 10%, the sampling location is the lower part and the loading speed is 40 mm min-1. When the sampling location is the lower part, optimization is carried out assuming the theoretical minimum of the maximum shear force and critical across-compression failure force as the optimization target. In this case, the loading speed is 20 mm min-1, while the water content is between 30 and 50%. This indicates that the parameter range requires a low power consumption during the crushing of film residue mixtures. The test data can provide some theoretical references for the technical research and equipment development for the crushing of film
 
REFERENCES (30)
1.
Aydın İ. and Arslan S., 2018. Mechanical properties of cotton shoots for topping. Ind. Crops Prod., 112, 396-401. https://doi.org/10.1016/j.indc....
 
2.
Ádám K. and György K., 2019. Physical characteristics and mechanical behaviour of maize stalks for machine development. Int. Agrophys., 33, 427-436. https://doi.org/10.31545/intag....
 
3.
Chen M.J., Wang Z.W., Qu H.L., Chen Y.S., Liu K.K., and Song D.P., 2015. Bending and tensile properties tests of the cotton-stalk. J. Chinese Agric. Mechan., 36(5): 29-32.
 
4.
Chen X.G. and Zhao Y., 2010. Development of double-film mulch precision planter for cotton seeding. Trans. Chinese Soc. Agric. Eng., 26(4): 106-112.
 
5.
Ding L.P., Chen Y.C., Ge Y., and Wang L., 2016. Research on the shear mechanical property of cotton stalks. J. Chinese Agric. Mechan., 37(2): 116-118+122.
 
6.
Dong H.G., Liu T., Li Y.G., Liu H.F., and Wang D., 2013. Effects of plastic film residue on cotton yield and soil physical and chemical properties in Xinjiang. Trans. Chinese Soc. Agric. Machinery, 29(8): 91-99.
 
7.
Du X.J., Li Y.D., Yan S.T., Li X.Z., Song Z.H., and Li F.D., 2011. Mechanics characteristics of cotton stalks. Trans. Chinese Soc. Agric. Machinery, 42(4): 87-91.
 
8.
Eissa E., Gomaa A.H., Baiomay M.H., and Ibrahim A.A., 2008. Physical and mechanical characteristics for some agricultural residues. Misr J. Agric. Eng., 25(1), 121-147.
 
9.
Gao T.H., Yan Y.F., Li F.D., Li Y.D., Tian F.Y., Chen C.K., and Song Z.H., 2016. Shear mechanical properties of cotton stalks at the harvesting time based on response surface methodology. China Sciencepaper, 11(22): 2542-2547.
 
10.
Hirai Y., Inoue E., Mori K., and Hashiguchi K., 2002. Investigation of mechanical interaction between a combine harvester reel and crop stalks. Biosys. Eng., 83(3), 307-317. https://doi.org/10.1006/bioe.2....
 
11.
Huang J., Liu W., Zhou F., Peng Y., and Wang N., 2016. Mechanical properties of maize fibre bundles and their contribution to lodging resistance. Biosys. Eng., 151, 298-307. https://doi.org/10.1016/j.bios....
 
12.
Jha S.K., Singh A., and Kumar A., 2008. Physical characteristics of compressed cotton stalks. Biosys. Eng., 99(2), 205-210. https://doi.org/10.1016/j.bios....
 
13.
Li Y.D., Du X.J., Song Z.H., and Li F.D., 2011. Test of shear mechanical properties of cotton stalks. Trans. Chinese Soc. Agric. Eng., 27(2): 124-128.
 
14.
Liu J.G., Bian X.M., Li Y.B., and Sun Y.Y., 2008. Effects of long-term continuous cropping of cotton and returning cotton stalk into field on soil biological activities. J. Agro-Environ. Sci., 29(02): 246-250.
 
15.
Liu L., Chen G.X., and Su F., 2014. Analysis on tensile properties of cotton stalks. J. Southern Agric., 45(11): 2031-2035.
 
16.
Meng H.B., Han L.J., and Wang J.C., 2005. Development of the test2bed for testing the mechanical properties of straw materials. Trans. Chinese Soc. Agric. Machinery, 21(5): 77-80.
 
17.
Niklas K.J. and Moon F.C., 1988. Flexural stiffness and modulus of elasticity of flower stalks from allium sativum as measured by multiple resonance frequency spectra. American J. Botany, 75(10), 1517-1525. https://doi.org/10.1002/j.1537....
 
18.
Qin C.L., Zhou L., Wang L.Y., and Sun J.L., 2017. Experiment on Shear and bending characteristics of Cotton stalk based on Quadratic regression orthogonal rotation combination Design. Jiangsu Agric. Sci., 45(23): 203-206.
 
19.
Sessiz A., Eliçin A.K., Esgici R., Özdemir G., and Nozdrovicky L., 2013. Cutting properties of olive sucker. Acta Technol. Agric., 3, 82-86. https://doi.org/10.2478/ata-20....
 
20.
Shen M., Zhang G.Z., Xia J.F., Zhou Y., and Xu Q.C., 2010a. Research on the mechanical properties of the bottom of cotton stalk at harvest time. J. Shanxi Agric. University, 30(1): 49-51.
 
21.
Shen X.Y., Wang P., Jiang S., and Xu S.Y., 2010b. Study on mechanical property of compression and shearing of cotton stalks. J. Agric. Mechan. Res., 32(9): 155-158.
 
22.
Shi N., Guo K.Q., Fan Y.J., Liu B.X., and Yuan X.L., 2017. Peeling and shearing mechanical performance test of cotton stalks in extrusion state. Trans. Chinese Soc. Agric. Eng., 33(18): 51-58.
 
23.
Tan L.L., Wang C.Y., Li Y.F., and Wang Y.D., 2013. Study on the testing experiment of mechanical property of cotton straws. Xinjiang Agric. Sci., 50(8): 1513-1518.
 
24.
Tavakoli H., Mohtasebi S.S., Jafari A., and Nazari G.M., 2009. Some engineering properties of barley straw. Appl. Eng. Agric., 25(4), 627-633. https://doi.org/10.13031/2013.....
 
25.
Wanjura J.D., Barnes E.M., Kelley M.S., Holt G.A., and Pelletier M.G., 2014. Quantification and characterization of cotton crop biomass residue. Industrial Crops Products, 56, 94-104. https://doi.org/10.1016/j.indc....
 
26.
Wu J., Huang Y., Wang Y.Y., and Wang W.X., 2004. Study on axial compression properties of cotton stalks. J. Agric. Mechan. Res., 4: 148-149+152.
 
27.
Wu M., Pan H.Y., Zhao D.L., and Li D., 2018. Analysis of physicochemical composition and dynamic mechanical properties of Avena sativa stalk. Trans. Chinese Soc. Agric.Machinery, 49(S1): 447-455.
 
28.
Zhang J.T., Li H.T., and Wang C.Y., 2014. Static mechanical properties experimental study of cotton stalks. J. Chinese Agric. Mechan., 35(2): 82-84.
 
29.
Zhang J.X., Wang T.J., Chen M.J., Zhao W.S., Wang Z.W., Liu K.K., Yeerbolati T., Wang Y.C., Liu X., and Liu A.M., 2019. Design of toothed disc cotton stalk harvester. Trans. Chinese Soc. Agric. Eng., 35(15): 1-8.
 
30.
Zhang K., He Y., Zhang H., and Li H., 2017. Research on mechanical properties of corn stalk. AIP Conf. Proc., 2, 25-26, Wuhan, China.
 
eISSN:2300-8725
ISSN:0236-8722