RESEARCH PAPER
Texture classification of particle size distribution data measured with laser diffraction method using different water types
 
More details
Hide details
1
Department of Soil Physics and Water Management, Institute for Soil Sciences, Centre for Agricultural Research, Hungarian Research Network, 1116 Budapest, Fehérvári út 132-144, Hungary
 
2
Department of Soil Science, Institute of Environmental Sciences, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Páter Károly u. 1, Hungary
 
3
Department of Soil Mapping and Environmental Informatics, Institute for Soil Sciences, Centre for Agricultural Research, Hungarian Research Network, 1116 Budapest, Fehérvári út 132-144, Hungary
 
 
Final revision date: 2025-03-20
 
 
Acceptance date: 2025-04-04
 
 
Publication date: 2025-06-23
 
 
Corresponding author
András Makó   

Department of Soil Physics and Water Management, Institute for Soil Sciences, Centre for Agricultural Research, Hungarian Research Network, Fehérvári, 1116, Budapest, Hungary
 
 
Int. Agrophys. 2025, 39(4): 347-364
 
HIGHLIGHTS
  • Degree of soil disaggregation affects LDM PSD results and soil texture
  • Different disaggregation methods are effective depending on soil properties
  • LDM PSD test results are affected by the quality of the aqueous medium used
  • It is crucial to grasp the nature of soil-liquid phase-dispersant interactions
  • Standardisation of LDM PSD test requires knowledge of the above factors
KEYWORDS
TOPICS
ABSTRACT
Laser diffraction measurement (LDM) is an accurate, fast, and reproducible method for measuring the particle size distribution (PSD), which is the basis for texture determination. However, LDM might yield different results from those provided by previously used sedimentation-based methods and even by other LDM measurements, depending on inter alia the applied instruments, their geometry, sample preparation, and/or pretreatment methods. It is also not yet generally known how these deviations affect the texture classification of soils. In our work, results of nine different texture classifications of eight soil samples were compared using confusion matrices based on PSD data obtained by: a) the sieve pipette method (SPM) after removal of binding agents between elementary particles; b) LDM measurement (without preparation) in distilled water and tap water, with pretreatments as follows: 1) without a dispersing effect, 2) using Calgon, 3) using ultrasound, or 4) applying their combination. Our results showed that the texture classification might shift by more than two classes due to either the type of measurement or the chemical or mechanical disaggregation method used, the quality of aqueous media, the variation of soil properties, or the interactions occurring in soil-liquid phase-dispersant systems. The standardisation of the LDM requires the elimination of these sources of error.
FUNDING
This research is supported by the Hungarian National Research, Development and Innovation Office Foundation (Grant No. OTKA K134563) and by a common grant from the Hungarian and Polish Academy of Sciences (Grant No. NKM2023-40).
CONFLICT OF INTEREST
The authors do not declare any conflict of interest.
REFERENCES (101)
1.
Abdulkarim, M., Grema, H.M., Adamu, I.H., Mueller, D., Schulz, M., Ulbrich, M., Miocic, J.M. Preusser, F., 2021. Effect of using different chemical dispersing agents in grain size analyses of fluvial sediments via laser diffraction spectrometry. Methods and Protocols. 4(3), 44. https://doi.org/10.3390/mps403....
 
2.
Amézketa, E., 1999. Soil aggregate stability: a review. J. Sust. Agric. 14, 83-151. https://doi.org/10.1300/J064v1....
 
3.
Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbasapour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., van Griensven, A., Van Liew, M.W., Kannan, M., Jha, M.K., 2012. SWAT: Model use, calibration and validation. Transactions of the ASABE. 55(4), 1491-1508. https://doi.org/10.13031/2013.....
 
4.
Atterberg, A., 1912. Die Konsistenz und die Bindigkeit der Böden. Int. Mitt. für Bodenk. 2, 149-189.
 
5.
Balázs, R., Németh, T., Makó, A., Kovács Kis, V., Keresztes, M., 2011. Soil mineralogical effects of FAO pretreatment procedure during the particle size distribution measurements (in Hungarian). In: LIII. Georgikon Napok. Keszthely. Szept. 29-30. 73-83.
 
6.
Barna, Gy., Földényi, R., Tóth, Z., Balázs, R., Makó, A., 2015. Adsorption of cationic surfactant (hexadecylpyridinium chloride monohydrate) on soils (in Hungarian). Agrokém. Talajtan. 64, 105-122. . https://doi.org/10.1556/0088.2....
 
7.
Bartmiński, P., Świtoniak, M., Drewnik, M., Kowalska, J.B., Sowiński, P., Żyła, M., Bieganowski, A., 2022. Methodological problems with the classification and measurement of soils containing carbonates. Soil Sci. Ann. 73(1), 149235. https://doi.org/10.37501/soils....
 
8.
Behera, S.K., Shukla, M.K., 2015. Effect of soil texture, moisture and organic matter on soil respiration in a tropical dry deciduous forest of India. J. Forestry Res. 26(4), 827-835.
 
9.
Bieganowski, A., Ryżak, M., Sochan, A., Barna, Gy., Hernádi, H., Beczek, M., Polakowski, C., Makó, A., 2018. Laser diffractometry in the measurements of soil and sediment particle size distribution. Adv. Agron. 151, 215-279. https://doi.org/10.1016/bs.agr....
 
10.
Bormann, H., 2010. Towards a hydrologically motivated soil texture classification. Geoderma 157, 142-153. https://doi.org/10.1016/j.geod....
 
11.
Bouma, J., 2016. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 543, 393-402.
 
12.
Bouma, J., Ittersum, M.K., Stoorvogel, N.H., Batjes N.H., Droogers, B.P., Pulleman M.M., 2016. Soil capability: exploring the functional potentials of soils. In: D.J. Field et al. (Eds). Global soil security, progress in soil science. Springer Int. Publ. Switzerland 27-44. https://doi.org/10.1007/978-3-....
 
13.
Bronick, C.J., Lal, R., 2005. Soil structure and management: a review. Geoderma 124(1-2), 3-22. https://doi.org/10.1016/j.geod....
 
14.
Buurman, P., Pape, Th., Muggler, C.C., 1997. Laser grain-size determination in soil genetic studies. 1. Practical problems. Soil Sci. 162(3), 211-218. https://doi.org/10.1097/000106....
 
15.
Buurman, P., Pape, Th., Reijneveld, J.A., de Jong, F., van Gelder, E., 2001. Laser-diffraction and pipette-method grain sizing of Dutch sediments: correlations for fine fractions of marine, fluvial, and loess samples. Neth. J. Geosci. 80(2), 49-57. https://doi.org/10.1017/S00167....
 
16.
Chappell, A., 1998. Dispersing sandy soil for the measurement of particle size distributions using optical laser diffraction. Catena 31(4), 271-281. https://doi.org/10.1016/S0341-....
 
17.
Congalton, R.G., Green, K., 2008. Assessing the accuracy of remotely sensed data: Principles and practices. CRC Press, Boca Raton, FL. https://doi.org/10.1201/978142....
 
18.
Dexter, A.R., 2004. Soil physical quality, Part 1. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120, 201-214. https://doi.org/10.1016/j.geod....
 
19.
Dewangan, S.K., Shrivastava, S.K., Soni, A.K., Yadav, R, Singh, D., Sharma, G.K., et al., 2023. Using the soil texture triangle to evaluate the effect of soil texture on water flow: a review. Int. J. Res. Appl. Sci. Eng. Technol. 11(4), 389-393. https://doi.org/10.22214/ijras....
 
20.
Filep, Gy., 1999. Quality and classification of irrigation water (in Hungarian). Agrokém. Talajtan. 48(1-2), 49-66.
 
21.
Fisher, P., Aumann, C., Chia, K., O'Halloran, N., Chandra, S. 2017. Adequacy of laser diffraction for soil particle size analysis. PLoS One 12(5):e0176510. https://doi.org/10.1371/journa....
 
22.
Fritsch: User's manual for Fritsch Laser Particle Sizer Analysette 22 Nanotec Measuring Unit. Idar-Oberstein, D: FRITSCH GmbH - Sizing and Miling.
 
23.
Fodor, N., Rajkai, K., 2005. Computer program (TALAJTANonc 1.0) for the calculation of the physical and hydrophysical properties of soils from other soil characteristics (in Hungarian). Agrokém. Talajtan. 54, 25-40. https://doi.org/10.1556/agroke....
 
24.
Fristensky, A., Grismer, M.E., 2008. A simultaneous model for ultrasonic aggregate stability assessment. Catena 74(2), 153-164. https://doi.org/10.1016/j.cate....
 
25.
Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: Klute, A. (Ed.) Methods of soil analysis, Part 1. Physical and mineralogical methods. Agronomy Monograph No. 9. 2nd edition, Am. Soc. Agronomy SSSA, Madison, WI, 383-411. https://doi.org/10.2136/sssabo....
 
26.
Goossens, D., Buck, B., Teng, Y., Robins, C., Goldstein, H., 2014. Effect of sulfate and carbonate minerals on particle-size distributions in arid soils. Soil Sci. Soc. Am. J. 78(3), 881-893. https://doi.org/10.2136/sssaj2....
 
27.
Gresina, F., Szalai, Z., Zacháry, D., Kiss, K., Madarász, B., Angyal, Zs., et al., 2025. Combined effect of a pretreatment and optical settings on the laser diffraction particle size distribution of soils and sediments. J. Soil Sediments 25, 160-178. https://doi.org/10.1007/s11368....
 
28.
Guarnaccia, J., Pinder, G., Fishman, M., 1997. NAPL: Simulator Documentation. United States Environmental Protection Agency. Ada, OK. EPA/600/R-97/102.
 
29.
Gupta, S., Borrelli, P., Panagos, P., Alewell, C., 2024. An advanced global soil erodibility (K) assessment including the effects of saturated hydraulic conductivity. Sci. Total Environ. 908, 168249. https://doi.org/10.1016/j.scit....
 
30.
International Organization for Standardization, 2009. ISO 11277: Soil quality – determination of particle size distribution in mineral soil material – Method by sieving and sedimentation.
 
31.
IUSS Working Group WRB. World reference base for soil resources, 2006. A framework for international classification, correlation and communication. World Soil Res. Rep. No. 103. Food and Agriculture Organization of the United Nations, Rome, Italy.
 
32.
Jassó, F., Horváth, B., Izsó, I., Király, L., Parászka, L., Kele, G., (Eds), 1989. Guidelines to large-scale soil mapping (in Hungarian). Agroinform. Budapest.
 
33.
Jadczyszyn, J., Niedźwiecki, J., Debaene, G., 2016. Analysis of agronomic categories in different soil texture classification systems. Pol. J. Soil Sci. 49(1), 61-72. https://doi.org/10.17951/pjss.....
 
34.
Kaiser, M., Berhe, A.A., Sommer, M., Kleber, M., 2012. Application of ultrasound to disperse soil aggregates of high mechanical stability. J. Plant Nutr. Soil Sci. 175(4), 521-526. https://doi.org/10.1002/jpln.2....
 
35.
Kaiser, M., Walter, K., Ellerbrock, R.H., Sommer, M., 2011. Effects of land use and mineral characteristics on the organic carbon content, and the amount and composition of Na-pyrophosphate soluble organic matter in sub-surface soils. Eur. J. Soil Sci. 62(2), 226-236. https://doi.org/10.1111/j.1365....
 
36.
Kaur, A., Fanourakis, G.C., 2018. Effect of sodium carbonate concentration in Calgon on hydrometer analysis results. Periodica Polytechnica Civil Eng. 62(4), 866-872. https://doi.org/10.3311/PPci.9....
 
37.
Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Klute, A. (Ed.) Methods of soil analysis. Part I. Agronomy Monograph No. 92nd ed. Am. Soc.Agronomy SSSA. Madison, WI. 425-442. https://doi.org/10.2136/sssabo....
 
38.
Kirsten, M., Mikutta, R., Kimaro, D.N., Feger, K-H., Kalbitz, K., 2021. Aluminous clay and pedogenic Fe oxides modulate aggregation and related carbon contents in soils of the humid tropics. Soil 7(2), 363-375. https://doi.org/10.5194/soil-7....
 
39.
Konert, M., Vandenberghe, J., 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44(3), 523-535. https://doi.org/10.1046/j.1365....
 
40.
Kovács, J., 2008. Grain-size analysis of the Neogene red clay formation in the Pannonian Basin. Int. J. Earth Sci. 97(1), 171-178. https://doi.org/10.1007/s00531....
 
41.
Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B., et al., 2008. An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology. J. Plant Nutr. Soil Sci. 171(1), 5-13. https://doi.org/10.1002/jpln.2....
 
42.
Kuhn, M., 2008. Building Predictive Models in R Using the caret Package. Journal of Statistical Software. 28(5), 1-26. https://doi.org/10.18637/jss.v....
 
43.
Labancz, V., Hernádi, H., Barna, Gy., Bakacsi, Zs., Szegi T., Kocsis, M., et al., 2024. The effect of different water types commonly applied during laser diffraction measurement on the particle size distribution of soils. Hung. Geogr. Bull. 73(4), 355-377. https://doi.org/10.15201/hunge....
 
44.
Li, S., Wang, B., Zhang, X., Wang, H., Yi, Y., Huang, X., et al., 2023. Soil particle aggregation and aggregate stability associated with ion specificity and organic matter content. Geoderma 429, 116285. https://doi.org/10.1016/j.geod....
 
45.
Madarász, B., Jakab, G., Szalai, Z., Juhos, K., 2012. Examination of sample preparation methods for the laser grain size analysis of soils with high organic matter content (in Hungarian). Agrokémia és Talajtan. 61(2), 381-398. https://doi.org/10.1556/agroke....
 
46.
Makó, A., Ryżak, M., Barna, Gy., Polakowski, C., Rajkai, K., Bakacsi, Zs., et al., 2022. Experiences of soil physical measurements with laser diffractometer and their application possibilities in soil water management research. Scientia et Securitas 2(4), 476-490. https://doi.org/10.1556/112.20....
 
47.
Makó, A., Szabó, B., Rajkai K., Szabó, J., Bakacsi, Zs., Labancz, V., et al., 2019. Evaluation of soil texture determination using soil fraction data resulting from laser diffraction method. Int. Agrophys. 33(4), 445-454. https://doi.org/10.31545/intag....
 
48.
Makó, A, Tóth, G, Weynants, M, Rajkai, K., Hermann, T., Tóth, B., 2017. Pedotransfer functions for converting laser diffraction particle-size data to conventional values. Eur. J. Soil Sci. 68(5), 769-782. https://doi.org/10.1111/ejss.1....
 
49.
Malvern: Mastersizer 3000 user manual, MAN0474 Issue 2.1 August 2013, Malvern Instruments Ltd.
 
50.
Mancini, M., Andrade, R, Silva, S.H.G., Rafael, R.B.A., Mukhopadhyay, S., Li, B., et al., 2024. Multinational prediction of soil organic carbon and texture via proximal sensors. Soil Sci. Soc. Am. J. 88, 8-26. https://doi.org/10.1002/saj2.2....
 
51.
Martín, M.Á., Pachepsky, Y.A., García-Gutiérrez, C., Reyes, M., 2018. On soil textural classifications and soil-texture-based estimations. Solid Earth. 9(1), 159-165. https://doi.org/10.5194/se-9-1....
 
52.
Mason, A., Greene, R.S.B., Joeckel, R.M., 2011. Laser diffraction analysis of the disintegration of aeolian sedimentary aggregates in water. Catena 87(1), 107-118. https://doi.org/10.1016/j.cate....
 
53.
Matouq, M., 2008. The physical impacts of applying high frequency of ultrasound wave on sea, brackish, hot spring and municipal water. Asian J. Chem. 20(5), 4101-4109.
 
54.
Mattheus, C.R., Diggins, T.P., Santoro, J.A., 2020. Issues with integrating carbonate sand texture data generated by different analytical approaches: A comparison of standard sieve and laser-diffraction methods. Sedimentary Geol. 401, 105635. https://doi.org/10.1016/j.sedg....
 
55.
Mgohele, R.N., Massawe, B.H.J., Shitindi, M.J., Sanga, H.G., Omar, M.M., 2024. Prediction of soil texture using remote sensing data. A systematic review. Front. Remote Sens. 5, 1461537. https://doi.org/10.3389/frsen.....
 
56.
Miller, M.P., Radliffe, D.E., Miller, D.M., 1988. An historical perspective on the theory and practice of soil mechanical analysis. J. Agron. Educ. 17(1), 24-28. https://doi.org/10.2134/jae198....
 
57.
Murray, M.R., 2002. Is laser particle size determination possible for carbonate-rich lake sediments? J. Paleolimnol. 27(2), 173-183. https://doi.org/10.1023/A:1014....
 
58.
Nemes, A., Wösten, J.H.M., Lilly, A., Oude Voshaar, J.H., 1999. Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases. Geoderma 90, 187-202. https://doi.org/10.1016/S0016-....
 
59.
Orhan, U., Kilinc, E., Albayrak, F., Aydin, A., Torun, A., 2022. Ultrasound penetration-based digital soil texture analyzer. Arab. J. Sci. Eng. 47, 10751-10767. https://doi.org/10.1007/s13369....
 
60.
Pachepsky, Ya.A., Rawls, W.J. (Eds), 2004. Development of Pedotransfer Functions in Soil Hydrology. Development in Soil Science 30. Elsevier Amsterdam, Boston, ISBN 0‐444‐51705‐7.
 
61.
Plante, A.F., Conant, R.T., Stewart, C.E., Paustian, K., Six, J., 2006. Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions. Soil Sci. Soc. Am. J. 70(1), 287-296. https://doi.org/10.2136/sssaj2....
 
62.
Polakowski, C., Makó, A., Sochan, A., Ryżak, M., Zaleski, T., Beczek, M., et al., 2023. Recommendations for soil sample preparation, pretreatment, and data conversion for texture classification in laser diffraction particle size analysis. Geoderma 430, 116358. https://doi.org/10.1016/j.geod....
 
63.
Polakowski, C., Ryżak, M., Bieganowski, A., Sochan, A., Bartmiński, P., Dębicki, R., et al., 2015. The reasons for incorrect measurements of the mass fraction ratios of fine and coarse material by laser diffraction. Soil Sci. Soc. Am. J. 79(1), 30-36. https://doi.org/10.2136/sssaj2....
 
64.
Polakowski, C., Ryżak, M., Sochan, A., Beczek, M., Mazur, R., Bieganowski, A., 2021. Particle size distribution of various soil materials measured by laser diffraction - The problem of reproducibility. Minerals 11(5), 465. https://doi.org/10.3390/min110....
 
65.
Rajkai, K., Kabos, S., van Genuchten, M.Th., 2004. Estimating the water retention curve from soil properties: comparison of linear, nonlinear and concomitant variable methods. Soil Till. Res. 79(2), 145-152. https://doi.org/10.1016/j.stil....
 
66.
Rajput, U., Sharma, S., Swami, D., Joshi, N., 2024. Rapid assessment of soil-water retention using soil texture‑based models. Environ. Earth Sci. 83, 454. https://doi.org/10.1007/s12665....
 
67.
Regelink, I.C., Weng, L., Koopmans, G.F., Van Riemsdijk, W.H., 2013. Asymmetric flow field-flow fractionation as a new approach to analyse iron-(hydr)oxide nanoparticles in soil extracts. Geoderma 202-203, 134-141. https://doi.org/10.1016/j.geod....
 
68.
Rengasamy, P., Green, R.S.B., Ford, G.W., Mehanni, A.H., 1984. Identification of dispersive behaviour and the management of Red-brown Earths. Aust. J. Soil Res. 22, 413-431. https://doi.org/10.1071/SR9840....
 
69.
Revelle, W., 2011. Psych: Procedures for Psychological, Psychometric, and Personality Research. Version 1.7.5. Northwestern Univ., Evanston, IL. https://cran.r-project.org/pac....
 
70.
Richer-de-Forges, A.C, Chen, S., Arrouays, D., Bourennane, H., Minasny, B., 2024. Hand-feel soil texture classes and particle-size distribution as predictors of soil water content at field capacity. Further insights into the sources of uncertainty. Catena 244, 108268. https://doi.org/10.1016/j.cate....
 
71.
Ryżak, M., Bieganowski, A., 2011. Methodological aspects of determining soil paricle-size distibution using the laser diffraction method. J. Plant Nutr. Soil Sci. 174(4), 624-633. https://doi.org/10.1002/jpln.2....
 
72.
Salley, S.W., Herrick, J.E., Holmes, C.V, Karl, J.W., Levi, M.R., McCord, S.E., et al., 2018. A comparison of soil texture-by-feel estimates: Implications for the citizen soil scientist. Soil Sci. Soc. Am. J. 82(6), 1526-1537. https://doi.org/10.2136/sssaj2....
 
73.
Schaap, M.G., Leij, F.J., van Genuchten M.Th., 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251(3-4), 163-176. https://doi.org/10.1016/S0022-....
 
74.
Scott, N.A., Cole, C.V., Elliott, E.T., Huffman, S.A., 1996. Soil textural control on decomposition and soil organic matter dynamics. Soil Sci. Soc. Am. J. 60(4), 1102-1109. https://doi.org/10.2136/sssaj1....
 
75.
Scott, I.S.P.C., Nouwakpo, K., Bjorneberg, D., Rogers, C., Vitko, L., 2024. Establishing a standard protocol for soil texture analysis using the laser diffraction technique. Soil Sci. Soc. Am. J. 88(5), 1691-1708. https://doi.org/10.1002/saj2.2....
 
76.
Seaton, F.M., George, P.B.L., Lebron, I., Jones, D.L., Creer, S., Robinson, D.A., 2020. Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biol. Biochem. 144, 107766. https://doi.org/10.1016/j.soil....
 
77.
Shein, E.V., Milanovskii, E.Yu., Molov, A.Z., 2006. The effect of organic matter on the difference between particle-size distribution data obtained by the sedimentometric and laser diffraction methods. Eur. Soil Sci. 39, S84-S90. https://doi.org/10.1134/S10642....
 
78.
Šimůnek, J., van Genuchten, M.Th., 2008. Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J. 7(2), 782-797. https://doi.org/10.2136/vzj200....
 
79.
Sitzia, L., Bertran, P., Sima, A., Philippe, C., Queffelec, A., Rousseau, D.-D., 2017. Dynamics and sources of last glacial Aeolian deposition in southwest France derived from dune patterns, grain-size gradients and geochemistry, and reconstruction of efficient wind directions. Quarternary Sci. Rev. 170(8), 250-268. https://doi.org/10.1016/j.quas....
 
80.
Sochan, A., Bieganowski, A., Ryżak, M., Dobrowolski, R., Bartmiński, P., 2012. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int. Agrophys. 26(1), 99-102. https://doi.org/10.2478/v10247....
 
81.
Srivastava, P., Shukla, A., Bansal, A., 2021. A comprehensive review on soil classification using deep learning and computer vision techniques. Multimed. Tools Appl. 80(10), 14887-14914. https://doi.org/10.1007/s11042....
 
82.
Srivastava, A., Valsala, R., 2023. Numerical modelling to access on transport and attenuation of petroleum hydrocarbons in unsaturated zones. Environ. Sci. Pollut. Res. 30, 46132-46146. https://doi.org/10.1007/s11356....
 
83.
Stevenson, A., Hartemink, A.E., Zhang, Y., 2023. Measuring sand content using sedimentation, spectroscopy, and laser diffraction. Geoderma 429, 116268. https://doi.org/10.1016/j.geod....
 
84.
Syvitski, J.P.M., 1991. Principles, methods and application of particle size analysis. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO978....
 
85.
Szabolcs, I. (Ed.), 1966. Handbook of the large-scale genetic soil mapping (in Hungarian). Országos Mezőgazdasági Minőségvizsgáló Intézet (OMMI), Budapest.
 
86.
Tan, X., Liu, F., Hu, L., Reed, A.H., Furukawa, Y., Zhang, G., 2017. Evaluation of the particle sizes of four clay minerals. Appl. Clay Sci. 135, 313-324. https://doi.org/10.1016/j.clay....
 
87.
Tomášová, G., Paseka, S., Bajer, A. 2025. Comparison of laser diffractometry and pipetting methods for particle size determination: A pilot study on the implications of result discrepancies on soil classification. Soil Sci. Soc. Am. J. 89, e20791. https://doi.org/10.1002/saj2.2....
 
88.
Totsche, K.U., Amelung, W., Gerzabek, M.H., Guggenberger, G., Klumpp, E., Knief, C., et al., 2018. Microaggregates in soils. J. Plant Nutr. Soil Scie. 181(1), 104-136. https://doi.org/10.1002/jpln.2....
 
89.
Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G., Tóth, G., 2015. New generation of hydraulic pedotransfer functions for Europe. Eur. J. Soil Sci. 66, 226-238. https://doi.org/10.1111/ejss.1....
 
90.
Tyugai, Z., Shein, E.V., Milanovskiy, E.Y., 2010. The effect of soil organic matter on the difference between particle-size distribution data obtained by the sedimentometric and laser diffraction methods. Anadolu J. Agric. Sci. 25(1), 63-66.
 
91.
Tyurin, I.V., 1931. A new modification of the volumetric method for determining humus using chromic acid. Pochvovedeniye 6, 36-47.
 
92.
Varga, Gy., Gresina, F., Újvári, G., Kovács, J., Szalai, Z., 2019. On the reliability and comparability of laser diffraction grain size measurements of paleosols in loess records. Sedimentary Geol. 389, 42-53. https://doi.org/10.1016/j.sedg....
 
93.
Várallyay, Gy., 1985. Moisture and substance regimes of Hungarian soils (in Hungarian). Agrokém. Talajtan. 34, 267-298.
 
94.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Ya, Schaap, M.G., van Genuchten M.Th., 2010. Using pedotransfer functions to estimate the van Genuchten-Mualem soil hydraulic properties: A review. Vadose Zone J. 9, 795-820. https://doi.org/10.2136/vzj201....
 
95.
Virto, I., Gartzia-Bengoetxea, N., Fernández-Ugalde, O., 2011. Role of organic matter and carbonates in soil aggregation estimated using laser diffractometry. Pedosphere 21(5), 566-572. https://doi.org/10.1016/S1002-....
 
96.
Weaver, J.W., Charbeneau, R.J., Tauxe, J.D., Lien, B.K., Provost, J.B., 1994. The hydrocarbon spill screening model (HSSM). 1. U.S. Environmental Protection Agency, Ada, Oklahoma. EPA/600/R-94/039a.
 
97.
White, M.D., Oostrom M., 2006. STOMP Subsurface Transport Over Multiple Phases, Version 4.0, Users Guide. Pacific Northwest National Laboratory. Richland, Washington. https://doi.org/10.2172/101253....
 
98.
Wösten, J.H.M., Finke, P.A.M., Jansen J.W., 1995. Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. Geoderma 66, (3-4) 227-237. https://doi.org/10.1016/0016-7....
 
99.
Wösten, J.H.M., Pachepsky, Ya.A., Rawls, W.J., 2001. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251(3-4), 123-150. https://doi.org/10.1016/S0022-....
 
100.
Yang, X., Zhang, Q., Li, X., Jia, X., Wei, X., Shao, M., 2015. Determination of soil texture by laser diffraction method. Soil Sci. Soc. Am. J. 79(6), 1556-1566. https://doi.org/10.2136/sssaj2....
 
101.
Zacháry, D., Filep, T., Jakab, G., Ringer, M., Balázs, R., Németh, T., et al., 2024. Texture and clay mineralogy as main drivers of the priming effect in temperate forest soils. Plant Soils https://doi.org/10.1007/s11104....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top