Effect of extrusion-cooking conditions on the physical properties of Jerusalem artichoke straw
More details
Hide details
Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
Final revision date: 2020-09-21
Acceptance date: 2020-09-24
Publication date: 2020-11-17
Int. Agrophys. 2020, 34(4): 441-449
The paper presents the effect of extrusion-cooking conditions (moisture content and screw speed) on the physical properties of extruded Jerusalem artichoke straw. A single screw extruder was used for straw processing. Shredded Jerusalem artichoke straw moistened to 30, 40, and 50% was subjected to an extrusion-cooking process at various screw speeds (70, 90, and 110 rpm). Selected physical properties and pasting profile were tested. Significant differences were observed depending on the moisture content of the samples and the various screw speed on their physical properties. Notably, increased moisture content lowered the specific mechanical energy, increased processing efficiency, water solubility, peak viscosity and breakdown. The maximum efficiency and the highest breakdown was observed for the sample with 50% moisture content processed at an extruder screw speed of 90 rpm. The sample obtained at 30% moisture and at 90 rpm was characterized by the lowest efficiency and hot paste viscosity, and the highest specific mechanical energy. The results showed that the extrusion-cooking process yielded desirable changes to the structure of the analysed lignocellulosic biomass.
Bouasla A., Wójtowicz A., and Zidoune M.N., 2017. Gluten-free precooked rice pasta enriched with legumes flours: physical properties, texture, sensory attributes and microstructure. LWT-Food Sci. Technol., 75, 569-577.
Bouasla A., Wójtowicz A., Zidoune M.N., Olech M., Nowak R., Mitrus M., and Oniszczuk A., 2016. Gluten-free precooked rice-yellow pea pasta: effect of extrusion-cooking conditions on phenolic acids composition, selected properties and microstructure. J. Food Sci., 81, C1070-C1079.
Cieślik M., Dach J., Lewicki A., Smurzyńska A., Janczak D., Pawlicka-Kaczorowska J., Boniecki P., Cyplik P., Czekała W., and Jóźwiakowski K., 2016. Methane fermentation of the maize straw silage under meso- and thermophilic conditions. Energy, 115(2), 1495-1502.
Combrzyński M., Matwijczuk A., Wójtowicz A., Oniszczuk T., Karcz D., Szponar J., Niemczynowicz A., Bober D., Mitrus M., Kupryaniuk K., Stasiak M., Dobrzański B., and Oniszczuk A., 2020. Potato starch utilization in ecological loose-fill packaging materials-sustainability and characterization. Materials, 13, 1390.
Dach J., Boniecki P., Przybył J., Janczak D., Lewicki A., Czekała W., Witaszek K., Rodriguez Carmona P.C., and Cieślik M., 2014. Energetic efficiency analysis of the agricultural biogas plant in 250 kWe experimental installation. Energy, 69, 34-38.
Deepa C. and Hebbar H.U., 2017. Influence of micronization on physicochemical properties of maize grains. J. Food Process. Preserv., 41, Art. No. 13195.
De la Rosa-Millan J., Heredia-Olea E., Perez-Carrilo E., Guajardo-Flores D., and Serna-Saldivar S.R.O., 2019. Effect of decortication, germination and extrusion on physicochemical and in vitro protein and starch digestion characteristics of black beans (Phaseolus vulgaris L.). LWT-Food Sci. Technol., 102, 330-337.
Ding Q.B., Ainswirth P., Plinkett A., Tucker G., and Marson H., 2006. The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. J. Food Eng., 73(2), 142-148.
Ekielski A., Żeleziński T., Siwek A., Sharma V., and Mishra P.K., 2018. Formulation and characterization of corn grits-propylene glycol extrudates. Materials Today: Proc., 21, 1772-1780.
Gizińska-Górna M., Czekała W., Jóźwiakowski K., Lewicki A., Dach J., Marzec M., Pytka A., Janczak D., Kowalczyk-Juśko A., and Listosz A., 2016. The possibility of using plants from hybrid constructed wetland waste water treatment plant for energy purposes. Ecol. Eng., 95. 534-541.
Guerrieri A.S., Anifantis A.S., Santoro F., and Pascuzzi S., 2019. Study of a large square baler with innovative technological systems that optimize the baling effectiveness. Agriculture, 9(5), 86.
Hagenimana A., Ding X., and Fang T., 2006. Evaluation of rice flour modified by extrusion cooking. J. Cereal Sci., 43, 38-46. / j.jcs.2005.09.003.
Hjorth M., Gränitz K., Adamsen A.P.S., and Møller H.B., 2011. Extrusion as a pretreatment to increase biogas production. Bioresour. Technol., 102, 4989-4994.
Karunanithy C., Muthukumarappan K., and Gibbons W.R., 2012. Extrusion pretreatment of pine wood chips. Appl. Biochem. Biotechnol., 167, 81-99.
Kaur J., 2015. Effect of extrusion pre-treatment on physical properties and sugar recovery of cold press and solvent extracted canola, camelina and carinata meal. Master Thesis, South Dakota State University, https://openprairie.sdstate.ed....
Koh B.K. and Singh V., 2009. Cooking behavior of rice and black gram in the preparation of Idli, a traditional fermented product of Indian origin, by viscography. J. Texture Stud., 40, 36-50.
Kowalczyk-Juśko A., 2019. Chemical composition and energetic characteristics of Miscanthus sacchariflorus biomass as used for generation of energy. Przem. Chem., 95/11.
Kozłowski K., Lewicki A., Czekała W., Wójtowicz A., Kupryaniuk K., and Dróżdż D., 2019a. Extrusion pretreatment of maize straw – case study for a Polish biogas plants. Int. Agrophys., 33, 527-535, https://doi: 10.31545/intagr/113548.
Kozłowski K., Pietrzykowski M., Czekała W., Dach J., Kowalczyk-Juśko A., and Jóźwiakowski K., 2019b. Energetic and economic analysis of biogas plant with using the dairy industry waste. Energy, 183, 1023-1031.
Kumar A.K. and Sharma S., 2017. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess, 4, 7.
Kumar P., Barrett D.M., Delwiche M.J., and Stroeve P., 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res., 48, 8, 3713-3729.
Kupryaniuk K., Oniszczuk T., Combrzyński M., Czekała W., and Matwijczuk A., 2020. The influence of corn straw extrusion pretreatment parameters on methane fermentation performance. Materials, 13(13), 3003.
Maj G., Szyszlak-Bargłowicz J., Zając G., Słowik T., Krzaczek P., and Piekarski W., 2019. Energy and emission characteristics of biowaste from the corn grain drying process. Energies, 12(22), 4383.
Makowska M., 2013. Effect of flaxseed by-product addition on quality of extruded snacks (in Polish). Aparatura Badawcza i Dydaktyczna, 18(4), 309-316.
Mitrus M., Wójtowicz A., Oniszczuk T., Gondek E., and Combrzyński M., 2017. Effect of processing conditions on microstructure and pasting properties of extrusion-cooked starches. Int. J. Food Eng., 13(6), 20160287.
Oniszczuk T., Wójtowicz A., Mościcki L., Mitrus M., Kupryaniuk K., Kusz A., and Bartnik G., 2016. Effect of natural fibres on the mechanical properties of thermoplastic starch. Int. Agrophys., 30, 211-218.
Pilarska A., Pilarski K., and Ryniecki A., 2014. The use of methane fermentation in the development of selected waste products of food industry (in Polish). Nauki Inżynierskie i Technologie, 4(15), 100-111.
Przybył J., Dach J., Wojcieszak D., Mazurkiewicz J., and Zaborowicz M., 2017. The possibility of maize straw application as a substrate for biogas plants. Proc. 9th Int. Scientific Symp. Farm Machinery and Process Management in Sustainable Agriculture, 318-323.
Robak K. and Balcerek M., 2017. Role of lignocellulosic biomass pretreatment in the production of bioethanol II generation (in Polish). Acta Agroph., 24(2), 301-318.
Rodiahwati W. and Sriariyanun M., 2016. Lignocellulosic biomass to biofuel production: integration of chemical and extrusion (screw press) pretreatment. KMUTNB Int. J. Appl. Sci. Technol., 9, 289-298.
Wandera S.M., Qiao W., Algapani D.E., Bi S., Yin D., and Qi X., 2018. Searching for possibilities to improve the performance of full scale agricultural biogas plants. Renew Energy, 116, 720-727.
Wani S.A. and Kumar P., 2016. Development and parameter optimalization of health promising extrudates based on fenugreek oat and pea. Food Biosci., 14, 34-40.
Witaszek K., Pilarska A., and Pilarski K., 2015. Selected methods of vegetable raw material pre-treatment used in biogas production (in Polish). Ekonomia i Środowisko, 2(53), 130-144.
Wójtowicz A., Oniszczuk A., Oniszczuk T., Kocira S., Wojtunik K., Mitrus M., Kocira A., Widelski J., and Skalicka-Woźniak K., 2017. Application of Moldavian dragonhead (Dracocephalum moldavica L.) leaves addition as a functional component of nutritionally valuable corn snacks. J. Food Sci. Technol., 54(10), 3218-3229.
Journals System - logo
Scroll to top