REVIEW PAPER
Mapping mechanistic pathways of seed priming in maize (Zea mays L.): A systematic review
 
More details
Hide details
1
School of Architecture, Art and Design, Tecnologico de Monterrey, Monterrey 64700, Mexico
 
2
Postgraduate Programme in Systems Engineering-Biophysical Systems, National Polytechnic Institute, Mexico City 07738, Mexico
 
3
School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
 
4
Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64700, Mexico
 
5
National School of Biological Sciences, National Polytechnic Institute, Mexico City 07738, Mexico
 
 
Final revision date: 2026-01-07
 
 
Acceptance date: 2026-01-12
 
 
Publication date: 2026-02-10
 
 
Corresponding author
Claudia Hernandez-Aguilar   

ESIME-Zacatenco, SEPI-Programa de Posgrado en Ingeniería de Sistemas, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, 07738, Ciudad de México, Mexico
 
 
Int. Agrophys. 2026, 40(2): 173-202
 
HIGHLIGHTS
  • Mechanistic pathways
  • Physiological responses
  • Genotype-stress interactions
  • Maize (Zea mays L.)
KEYWORDS
TOPICS
ABSTRACT
Seed priming is recognised as an effective approach to enhance stress resilience and crop performance in maize (Zea mays L.), however, the underlying mechanistic relationships remain insufficiently integrated. This review systematically synthesises the literature from 2020 to 2025, analysing how various priming agents, stress types, and maize genotypes are linked on the core biochemical and physiological pathways. The results reveal that all effective seed priming strategies converge on the rapid induction of antioxidant enzymes, superoxide dismutase, catalase, and peroxidases, which form the primary defence against oxidative stress during early development. The specific priming agent determines the recruitment of auxiliary pathways, including hormone crosstalk, osmoregulation, ion homeostasis, and reserve mobilisation, which are engaged according to the prevailing stress condition. The genotype background modulates the extent, but not the direction, of physiological benefits, with tolerant lines consistently displaying superior outcomes. To encapsulate these multidimensional relationships, a Sankey diagram is presented, mapping the flow from the priming type through activated mechanisms to physiological responses and genotype outcomes. This integrative visual framework clarifies the hierarchical and context-dependent nature of seed priming in maize, serving as a practical tool for designing targeted, genotype-tailored interventions.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
REFERENCES (72)
1.
Abu-Ria, M.E., Elghareeb, E.M., Shukry, W.M., Abo-Hamed, S.A., Ibraheem, F., 2024. Mitigation of drought stress in maize and sorghum by humic acid: differential growth and physiological responses. BMC Plant Biol. 24, 514. https://doi.org/10.1186/s12870....
 
2.
Afrouz, M., Sayyed, R.Z., Fazeli-Nasab, B., Piri, R., Almalki, W., Fitriatin, B.N., 2023. Seed bio-priming with beneficial Trichoderma harzianum alleviates cold stress in maize. PeerJ. 11, e15644. https://doi.org/10.7717/peerj.....
 
3.
Afzal, I., Imran, S., Javed, T., Basra, S.M.A., 2020. Evaluating the integrative response of moringa leaf extract with synthetic growth promoting substances in maize under early spring conditions. South African J. Botany 132, 378-387. https://doi.org/10.1016/j.sajb....
 
4.
Aguilar, J.J., Moore, M., Johnson, L., Greenhut, R.F., Rogers, E., Walker, D., et al., 2021. Capturing in-field root system dynamics with RootTracker. Plant Physiology 187, 1117-1130. https://doi.org/10.1093/plphys....
 
5.
Ahmad, A., Akram, N.A., Ashraf, M., 2025. Appraisal of the physio-biochemical efficacy of exogenously applied natural and synthetic sources of plant growth stimulants in modulating drought stress tolerance in maize (Zea mays L.). Acta Physiol Plant 47, 28. https://doi.org/10.1007/s11738....
 
6.
Ahmed, A.A., 2022. Efficiency of using garlic and moringa extracts as a priming for improving germination traits and seedling growth of maize (Zea mays L.). Egyptian J. Plant Breeding 27, 225-246.
 
7.
Almasian, N., Ebrahimi, A., Diyanat, M., Azizi Nezhad, R., Khosrowshahli, M., 2024. Synthesis and investigation of nano-biologic structures’ effect on soil pathogenic fungi in maize. Physiological and Molecular Plant Pathology 133, 102336. https://doi.org/10.1016/j.pmpp....
 
8.
Anggarda Gathot Subrata, B., Sezer, I., Mut, Z., Akay, H., 2023. Melatonin concentration and treatment technique influenced the increase of cereal plant biomass and antioxidant defence system under salinity stress. A Meta-Analysis. Gesunde Pflanzen 75, 1003-1015. https://doi.org/10.1007/s10343....
 
9.
Ansari, H.H., Siddiqui, A., Wajid, D., Tabassum, S., Umar, M., Siddiqui, Z.S., 2022. Profiling of energy compartmentalization in photosystem II (PSII), light harvesting complexes and specific energy fluxes of primed maize cultivar (P1429) under salt stress environment. Plant Physiol. Biochem. 170, 296-306. https://doi.org/10.1016/j.plap....
 
10.
Atif, M., Perveen, S., Parveen, A., Mahmood, S., Saeed, M., Zafar, S., 2022. Thiamine and indole-3-acetic acid induced modulations in physiological and biochemical characteristics of maize (Zea mays L.) under Arsenic Stress. Sustainability 14, 13288. https://doi.org/10.3390/su1420....
 
11.
Attia, E.Z., Youssef, N.H., Saber, H., Rushdi, M.I., Abdel-Rahman, I.A.M., Darwish, A.G., et al., 2022. Halimeda opuntia and Padina pavonica extracts improve growth and metabolic activities in maize under soil-saline conditions. J Appl. Phycol. 34, 3189-3203. https://doi.org/10.1007/s10811....
 
12.
Basit, A., Hussain, S., Abid, M., Zafar-ul-Hye, M., Ahmed, N., 2020. Zinc and potassium priming of maize (Zea mays L.) seeds for salt-affected soils. J. Plant Nutrition 44, 130-141. https://doi.org/10.1080/019041....
 
13.
Bhattacharya, N., Kochar, M., Bohidar, H.B., Yang, W., Cahill, D.M., 2023. Biologically synthesized and indole acetic acid-loaded graphene as biostimulants for maize growth enhancement. ACS Agric. Sci. Technol. 3, 432-444. https://doi.org/10.1021/acsags....
 
14.
Burin, C.C., da Silva Binotti, F.F., Silva, E.R., Silva, F.L.S., Costa, E., 2021. Can chemical agents associated with priming attenuate stress in corn seeds during the initial establishment? Revista de Agricultura Neotropical 8, e5780-e5780. https://doi.org/10.32404/rean.....
 
15.
Cardarelli, M., Woo, S.L., Rouphael, Y., Colla, G., 2022. Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants 11, 259. https://doi.org/10.3390/plants....
 
16.
Chen, J., Zeng, X., Yang, W., Xie, H., Ashraf, U., Mo, Z., et al., 2021. Seed priming with multiwall carbon nanotubes (mwcnts) modulates seed germination and early growth of maize under cadmium (cd) toxicity. J. Soil Sci. Plant Nutrition 21, 1793-1805. https://doi.org/10.1007/s42729....
 
17.
Chipilski, R., Moskova, I., Pencheva, A., Kocheva, K., 2023. Enhancement of maize seed viability after cold storage and induced senescence by priming with synthetic cytokinins. Zemdirbyste Agric. 110. https://doi.org/10.13080/z-a.2....
 
18.
Chitara, M.K., Singh, R.P., Singh, N.K., Rajpurohit, Y.S., Misra, H.S., 2024. Plant growth-promoting potential of Deinococcus spp. evaluated using Zea mays and Lens culinaris crops. J. Plant Growth Regulation 43, 4384-4395. https://doi.org/10.1007/s00344....
 
19.
El-Sanatawy, A.M., Ash-Shormillesy, S.M., Qabil, N., Awad, M.F., Mansour, E., 2021a. Seed halo-priming improves seedling vigor, grain yield, and water use efficiency of maize under varying irrigation regimes. Water 13, 2115. https://doi.org/10.3390/w13152....
 
20.
El-Sanatawy, A.M., El-Kholy, A.S., Ali, M.M., Awad, M.F., Mansour, E., 2021b. Maize seedling establishment, grain yield and crop water productivity response to seed priming and irrigation management in a mediterranean arid environment. Agronomy 11, 756. https://doi.org/10.3390/agrono....
 
21.
Farman, M., Nawaz, F., Majeed, S., Javeed, H.M.R., Ahsan, M., Ahmad, K.S., et al., 2022. Sil- icon seed priming combined with foliar spray of sulfur regulates photosynthetic and antioxidant systems to confer drought tolerance in maize (Zea mays L.). Silicon 14, 7901-7917. https://doi.org/10.1007/s12633....
 
22.
Fathi, N., Kazemeini, S.A., Alinia, M., Mastinu, A., 2023. The effect of seed priming with melatonin on improving the tolerance of Zea mays L. var saccharata to paraquat-induced oxidative stress through photosynthetic systems and enzymatic antioxidant activities. Physiolog. Molecular Plant Pathol. 124, 101967. https://doi.org/10.1016/j.pmpp....
 
23.
Gatan, M.G.B., Montefalcon, D.R.V., Aurigue, F.B., Abad, L.V., 2019. Effect of radiation-modified kappa-carrageenan on the morpho-agronomic characteristics of mungbean [vigna radiata (l.) r. wilczek]. Philippine J. Sci. 149, 135-143. https://doi.org/10.56899/149.S....
 
24.
Gnawali, A., Subedi, R., 2021. Gibberellic acid priming enhances maize seed germination under low water potential. Indonesian J. Agric. Sci. 22, 17-26. https://doi.org/10.21082/ijas.....
 
25.
Hussain, S., Rasheed, M., Ahmed, Z., Jilani, G., Irfan, M., Aziz, M., et al., 2024. Melatonin-mediated induction of salt tolerance in maize at germination and seedling stage. Sarhad J. Agric. 40, 490-501. https://doi.org/10.17582/journ....
 
26.
Hussain, S.S., Rasheed, M., Saleem, M.H., Ahmed, Z.I., Hafeez, A., Jilani, G., et al., 2023. Salt tolerance in maize with melatonin priming to achieve sustainability in yield on salt affected soils. Pak. J. Bot. 55, 19-35. https://doi.org/10.30848/PJB20...).
 
27.
Iftikhar, I., Shahbaz, M., Maqsood, M.F., Zulfiqar, U., Rana, S., Farhat, F., et al., 2024. Resilient mech- anism of strigolactone (gr24) in regulating morphological and biochemical status of maize under salt stress. Biocatalysis Agric. Biotechnol. 60, 103340. https://doi.org/10.1016/j.bcab....
 
28.
Iftikhar, N., Perveen, S., 2024. Riboflavin (vitamin b2) priming modulates growth, physiological and biochemical traits of maize (Zea mays L.) under salt stress. Pak. J. Bot. 56, 1209-1224. https://doi.org/10.30848/PJB20...).
 
29.
Imran, K., Zafar, H., Chattha, M.U., Mahmood, A., Maqbool, R., Athar, F., et al., 2022. Seed priming with different agents mitigate alkalinity induced oxidative damage and improves maize growth. Notulae Botanicae Horti Agrobotanici ClujNapoca 50, 12615-12615. https://doi.org/10.15835/nbha5....
 
30.
Indhuja, S., Babu, M., Gupta, A., Gopal, M., Mathew, J., Thomas, R., et al., 2021. Screening and characterization of nutrient solubilizing phytobeneficial rhizobacteria from healthy coconut palms in root (wilt) diseased tract of kerala, india. J. Environ. Biol. 42, 625-635. https://doi.org/10.22438/jeb/4....
 
31.
Islam, A.T., Ullah, H., Himanshu, S.K., Tisarum, R., Cha-um, S., Datta, A., 2022. Effect of salicylic acid seed priming on morpho-physiological responses and yield of baby corn under salt stress. Scientia Horticulturae 304, 111304. https://doi.org/10.1016/j.scie....
 
32.
Kadhim, J., Hamza, J., 2021. Effect of seeds soaking and vegetative parts nutrition with acids of ascorbic, citric and humic on maize growth. Iraqi J. Agricultural Sci. 52, 1207-1218. https://doi.org/10.36103/ijas.....
 
33.
Kakar, H.A., Ullah, S., Shah, W., Ali, B., Satti, S.Z., Ullah, R., et al., 2023. Seed priming modulates physiological and agronomic attributes of maize (Zea mays L.) under induced polyethylene glycol osmotic stress. ACS omega 8, 22788-22808. https://doi.org/10.1021/acsome....
 
34.
Kamseu-Mogo, J.P., Soulier, M., Kamgang-Youbi, G., Mafouasson, H.N.A., Dufour, T., 2024. Advancements in maize cultivation: synergistic effects of dry atmospheric plasma combined with plasma-activated water. J. Physics D: Appl. Physics 58, 055201. https://doi.org/10.1088/1361-6....
 
35.
Kasana, R.A., Iqbal, M., Ali, Q., Saeed, F., Rizwan, M., Perveen, R., et al., 2025. Synergistic effects of glutathione and zinc seed priming in alleviating salt stress on maize seed germination, metabolite levels, seedling vigor, and nutrient acquisition. Plant Stress 15, 100767. https://doi.org/10.1016/j.stre....
 
36.
Khaeim, H., Kende, Z., Jolánkai, M., Kovács, G.P., Gyuricza, C., Tarnawa, Á., 2022. Impact of temperature and water on seed germination and seedling growth of maize (Zea mays L.). Agronomy 12, 397. https://doi.org/10.3390/agrono....
 
37.
Khaledi, F., Balouchi, H., Dehnavi, M.M., Salehi, A., 2025. Enhancing maize yield, water use efficiency, and zn content under drought stress by applying Zn-solubilizing bacteria. Agric. Water Manag. 308, 109313. https://doi.org/10.1016/j.agwa....
 
38.
Khaliq, A., Muhammad, F., Shahzad, H., Alharbi, S.A., Alfarraj, S., Arshad, M., et al., 2024. Hermetic effect of moringa oleifera leaf extract mitigates salinity stress in maize by modulating photosynthetic efficiency, and antioxidant activities. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 52, 13862-13862. https://doi.org/10.15835/nbha5....
 
39.
Liu, X., Chang, X., Wang, Y., Wang, D., Wang, X., Meng, Q., et al., 2024. Adaptation to priming drought at six-leaf stage relieves maize yield loss to individual and combined drought and heat stressors around flowering. Environ. Experimental Botany 224, 105799. https://doi.org/10.1016/j.enve....
 
40.
Luqman, M., Shahbaz, M., Waraich, E.A., 2023. Effect of different concentrations of gr24 as seed priming treatment on physio-chemical and yield related attributes of maize (Zea mays L.) hybrids under drought stress. Pak. J. Botany 55, 1257-1266. https://doi.org/10.30848/PJB20...).
 
41.
Mahara, G., Bam, R., Kandel, M., Timilsina, S., Chaudhary, D., Lamichhane, J., et al., 2022. Seed priming with nacl improves germination in maize under saline soil conditions. Eurasian J. Soil Sci. 11, 151-156. https://doi.org/10.18393/ejss.....
 
42.
Manavalagan, N., Velusamy, M., Shanmugam, K., Arumugam, T., Nedunchezhiyan, V., Singaram, A., 2024. Enhancing drought resilience in maize hybrid coh (m) 8: Unravelling the role of polyamines in field performance. J. Applied Natural Sci. 16. https://doi.org/10.31018/jans.....
 
43.
Mehrian, S.K., Karimi, N., Rahmani, F., 2023. 24-epibrassinolide alleviates diazinon oxidative damage by escalating activities of antioxidant defense systems in maize plants. Scientific Reports 13, 19631. https://doi.org/10.1038/s41598....
 
44.
Mir, H.R., Yadav, S., Yadav, S., 2021. Hydropriming associated physiological and biochemical changes responsible for the enhanced planting value of maize hybrid and its parental line seeds. Turkish J. Agric. Forestry 45, 335-348. https://doi.org/10.3906/tar-20....
 
45.
Muhammad, I., Yang, L., Ahmad, S., Farooq, S., Khan, A., Muhammad, N., et al., 2023. Melatonin-priming enhances maize seedling drought tolerance by regulating the antioxidant defense system. Plant Physiology 191, 2301-2315. https://doi.org/10.1093/plphys....
 
46.
Mumtaz, M.Z., Ahmad, M., Zafar-ul Hye, M., Saqib, M., Akhtar, M.F.U.Z., Zaheer, M.S., 2022. Seed-applied zinc-solubilising bacillus biofertilisers improve antioxidant enzyme activities, crop productivity, and biofortification of maize. Crop Pasture Sci. 73, 503-514. https://doi.org/10.1071/CP2141....
 
47.
Natarajan, G.P., Venkataraman, S.M., Pitchamuthu, S., Rengaraj, M., 2022. Impact of silicon seed priming on osmoregulants, antioxidants, and seedling growth of maize grown under chemo-stress. World J. Environ. Biosciences 11, 1-7. https://doi.org/10.51847/ODzSU....
 
48.
Nawaz, F., Zulfiqar, B., Ahmad, K.S., Majeed, S., Shehzad, M.A., Javeed, H.M.R., et al., 2021. Pretreatment with selenium and zinc modulates physiological indices and antioxidant machinery to improve drought tolerance in maize (Zea mays L.). South African J. Botany 138, 209-216. https://doi.org/10.1016/j.sajb....
 
49.
Nawaz, H., Hussain, N., Jamil, M., Yasmeen, A., Bukhari, A., Aur- Ingzaib, M., et al., 2020. Seed biopriming mitigates terminal drought stress at reproductive stage of maize byenhancing gas exchange at- tributes and nutrient uptake. Turkish J. Agriculture Forestry 44, 250-261. https://doi.org/10.3906/tar-19....
 
50.
Nawaz, M., Ishaq, S., Ishaq, H., Khan, N., Iqbal, N., Ali, S., et al., 2020. Salicylic acid improves boron toxicity tolerance by modulating the physio-biochemical characteristics of maize (Zea mays L.) at an early growth stage. Agronomy 10, 2013. https://doi.org/10.3390/agrono....
 
51.
Nawaz, M., Wang, X., Saleem, M.H., Khan, M.H.U., Afzal, J., Fiaz, S., et al., 2021. Deciphering plantago ovata forsk leaf extract mediated distinct germination, growth and physio- biochemical improvements under water stress in maize (Zea mays L.) at early growth stage. Agronomy 11, 1404. https://doi.org/10.3390/agrono....
 
52.
Naz, H., Siddiqui, Z.S., Nida, K., Ali, B., Siddiqui, A., Mujahid, A., 2024. Physiological and photochemical screening of leguminous and non- leguminous plants interacting with nitrogen-fixing microbe pseudomonas fluorescens (nafp-19) modulating stress tolerance in a sub-optimal condition. J. Plant Growth Regulation 1-13. https://doi.org/10.1007/s00344....
 
53.
Nida, K., Siddiqui, Z.S., Siddiqui, M.H., Salman, Z.A., Umar, M., 2024. Azotobacter modulate nitrogen assimilation, sustain light harvesting efficiency and photosynthetic performance of maize cultivar in a saline soil. J. Soil Sci. Plant Nutr. 24, 4624-4640. https://doi.org/10.1007/s42729....
 
54.
Olayinka, B.U., Abdulbaki, A.S., Lawal, A.R., Alsamadany, H., Abdulra’uf, L.B., Ayinla, A., et al., 2023. Enhancing germination and seedling growth in salt stressed maize lines through chemical priming. Basrah J. Agric. Sci.s 36, 185-198. https://doi.org/10.37077/25200....
 
55.
Olayinka, B.U., Abdulkareem, K.A., Abdulbaki, A.S., Alsamadany, H., Alzahrani, Y., Isiaka, K., et al., 2022. Effects of priming on germination and biochemical at- tributes of three maize lines under nacl stress condition. Bioagro 34, 233-244. https://doi.org/10.51372/bioag....
 
56.
Ponnarmadha, S., 2022. Effect of synthesized biopolymer on physiological and biochemical changes in maize seeds. Current Trends Biotechnology Pharmacy 16, 85-94.
 
57.
Rehman, B., Zulfiqar, A., Attia, H., Sardar, R., Saleh, M.A., Alamer, K.H., et al., 2024. Seed priming with potassium nitrate can enhance salt stress tolerance in maize. Phyton (0031-9457) 93. https://doi.org/10.32604/phyto....
 
58.
Rhaman, M.S., Rauf, F., Tania, S.S., Bayazid, N., Tahjibul Arif, M., Robin, A.H.K., et al., 2024. Proline and glycine betaine: a dynamic duo for enhancing salt stress resilience in maize by regulating growth, stomatal size, and oxidative stress responses. Plant Stress 14, 100563. https://doi.org/10.1016/j.stre....
 
59.
Saeed, F., Kausar, A., Ali, Q., Akhter, N., Tehseen, S., 2023. Impact of combined glutathione and zn application for seed priming in ameliorating the ad- verse effects of water stress on maize seed germination attributes, metabolite levels, and seedling vigor. Gesunde Pflanzen. 75, 2147-2168. https://doi.org/10.1007/s10343....
 
60.
Seifikalhor, M., Hassani, S.B., Aliniaeifard, S., 2020. Seed priming by cyanobacteria (Spirulina platensis) and salep gum enhances tolerance of maize plant against cadmium toxicity. J. Plant Growth Regulation 39, 1009-1021. https://doi.org/10.1007/s00344....
 
61.
Sezer, İ., Kiremit, M.S., Öztürk, E., Subrata, B.A.G., Osman, H.M., Akay, H., Arslan, H., 2021. Role of melatonin in improving leaf mineral content and growth of sweet corn seedlings under different soil salinity levels. Scientia Horticulturae 288, 110376. https://doi.org/10.1016/j.scie....
 
62.
Sime, G., Aune, J.B., 2020. On‐farm seed priming and fertilizer micro‐dosing: Agronomic and economic responses of maize in semi‐arid Ethiopia. Food Energy Security 9, e190. https://doi.org/10.1002/fes3.1....
 
63.
Singh, V., Sharma, M., Upadhyay, H., Siddique, A., 2020a. Ameliorative effect of seed priming on germination, vigour index and tolerance index against short term moisture stress in maize (Zea mays L.). Indian J. Agric. Res. 54, 378-382. https://doi.org/10.18805/IJARe....
 
64.
Singh, V., Siddique, A., Krishna, V., Singh, M., 2020b. Effect of seed priming treatment with nitrate salt on phytotoxicity and chlorophyll content under short term moisture stress in maize (Zea mays L.). Nat Environ Pollu Techn 19, 1119-23. https://doi.org/10.46488/NEPT.....
 
65.
Sirisuntornlak, N., Ullah, H., Sonjaroon, W., Anusontpornperm, S., Arirob, W., Datta, A., 2021a. Interactive effects of silicon and soil ph on growth, yield and nutrient uptake of maize. Silicon 13, 289-299. https://doi.org/10.1007/s12633....
 
66.
Sirisuntornlak, N., Ullah, H., Sonjaroon, W., Arirob, W., Anusontpornperm, S., Datta, A., 2021b. Effect of seed priming with silicon on growth, yield and nutrient uptake of maize under water-deficit stress. J. Plant Nutrition 44, 1869-1885. https://doi.org/10.1080/019041....
 
67.
Tolay, I., 2024. Seed priming and soil application of zinc improved yield and shoot zn concentration of corn (Zea mays L.). J. King Saud University-Science 36, 103433. https://doi.org/10.1016/j.jksu....
 
68.
Toledo, C., Da Silva, A., Del Peloso, M., Leite, M., Bressanin, L., Esteves, G., et al., 2024. Putrescine priming effects on chlorophyll fluorescence, antioxidant enzyme activity, and primary metabolite accumulation in maize seedlings under water deficit. Biologia Plantarum 68, 22-30. https://doi.org/10.32615/bp.20....
 
69.
Yiğit, İ., Atici, Ö., 2022. Seed priming with nitric oxide mitigates exogenous methylglyoxal toxicity by restoring glyoxalase and antioxidant systems in germinating maize (Zea mays L.) seeds. Cereal Res. Communications 50, 811-820. https://doi.org/10.1007/s42976....
 
70.
Younas, H.S., Abid, M., Ashraf, M., Shaaban, M., 2022. Seed priming with silicon and chitosan for alleviating water stress effects in maize (Zea mays L.) by improving antioxidant enzyme activities, water status and photosynthesis. J. Plant Nutrition 45, 2263-2276. https://doi.org/10.1080/019041....
 
71.
Zahra, N., Raza, Z.A., Mahmood, S., 2020. Effect of salinity stress on various growth and physiological attributes of two contrasting maize genotypes. Brazilian Archives Biol. Technol. 63, e20200072. https://doi.org/10.1590/1678-4....
 
72.
Zhu, M., Xiao, R., Yu, T., Guo, T., Zhong, X., Qu, J., et al., 2024. Raffinose priming improves seed vigor by ros scavenging, rafs, and α-gal activity in aged waxy corn. Agronomy 14, 2843. https://doi.org/10.3390/agrono....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top