RESEARCH PAPER
Spectral signatures of the physicochemical quality of white, black, red, and parboiled rice processed using non-destructive technologies (VIS/SWIR) combined with machine learning algorithms
More details
Hide details
1
Laboratory of Digital Agriculture, Campus of Chapadão do Sul, Federal University of Mato Grosso do Sul, Rodovia MS-306, km 105, 79560-000, Chapadão do Sul, MS, Brazil
2
Laboratory of Postharvest (LAPOS), Campus Cachoeira do Sul, Federal University of Santa Maria, Rua Ernesto Barros, 1345, 96506-322, Cachoeira do Sul, RS, Brazil
Final revision date: 2025-11-21
Acceptance date: 2026-01-05
Publication date: 2026-02-06
Corresponding author
Paulo Carteri Coradi
Laboratory of Postharvest (LAPOS), Campus Cachoeira do Sul, Federal University of Santa Maria, Rodovia Taufik Germano, 3013, 96503-205, Cachoeira do Sul, Brazil
Int. Agrophys. 2026, 40(2): 159-172
HIGHLIGHTS
- New proposal of classification white, parboiled, black, and red rice
- Rice prediction quality using artificial intelligence models
- Classification the rice quality in pre-processing and storage units
- VIS-SWIR spectroscopy and chemometric methods applied in the rice industry
KEYWORDS
TOPICS
ABSTRACT
This study aimed to correlate the physicochemical attributes of rice grains using non-destructive techniques combined with machine learning algorithms. Samples of white, black, red, and parboiled rice were analyzed using hyperspectral spectroscopy (350-2 500 nm) and subjected to linear regression (LR), random forest (RF), gradient boosting (GB), support vector machine (SVM), convolutional neural networks (CNN), and recurrent neural networks (RNN) prediction. Spectral and physicochemical data were examined through multivariate analysis (PCA) and cross-validation using performance metrics such as R, R², MAE, and RMSE. The results indicated that SVM, RF, and GB outperformed the other algorithms, showing higher accuracy and lower variability in the prediction, SVM reached R = 0.952 and R² = 0.904, with MAE = 0.409 and RMSE = 0.582, followed closely by RF with R = 0.950 and MAE = 0.416, and GB with R = 0.947 and MAE = 0.431. Black rice stood out for its high protein, lipid, and ash contents. Parboiled rice showed higher fiber content, and white rice was notable for its elevated starch content. Hyperspectral spectroscopy proved effective in differentiating rice types, enabling the identification of relevant spectral bands for optimized sensors. Overall, integrating non-destructive technologies with machine learning shows strong potential for industrial applications.
ACKNOWLEDGEMENTS
The authors would like to thank UFSM (Federal University of Santa Maria) Laboratory of Postharvest (LAPOS) Research Group at Postharvest Innovation: Technology, Quality and Sustainability, UPF (University of Passo Fundo) Cereal Laboratory, and Federal University of Mato Grosso do Sul (UFMS) for their contributions in the research project.
FUNDING
This work was funded by CAPES (Coordination for the Improvement of Higher Education Personnel) Financial Code 001, CNPq (National Council for Scientific Technological Development) number 304966/2023-1, and FAPERGS-RS (Research Support Foundation of the State of Rio Grande do Sul) number 24/2551-0001150-1.
CONFLICT OF INTEREST
The authors declare that there is no conflict of interest in the research.
REFERENCES (64)
1.
Abeysiriwardena, D.S.D.Z., Gunasekara, D.C.S., 2020. Development of a red rice variety with excellent health properties and attractive grain qualities. Indian J. Genetics Plant Breeding 80(01), 115-117.
https://isgpb.org/journal/inde....
2.
Aekram, S., Klinsuk, J., Budtri, N., Sunongbua, P., Somphong, C., Lertsiriyothin, W., 2025. Differentiation of white rice Khao Dawk Mali 105 (KDML105) from other Thai white rice using FTIR microscope-attenuated total reflectance-focal plane array detector. Food Res. 9(1), 282-287.
https://doi.org/10.26656/fr.20....
3.
Akhter, K.T., Shozib, H.B., Islam, M.H., Sarwar, S., Islam, M.M., Akanda, M.R., et al., 2023. Variations in the major nutrient composition of dominant high-yield varieties (hyvs) in parboiled and polished rice of Bangladesh. Foods 12(21), 3997.
https://doi.org/10.3390/foods1....
5.
Assadzadeh, S., Walker, C.K., McDonald, L.S., Maharjan, P., Panozzo, J.F., 2020. Multi-task deep learning of near infrared spectra for improved grain quality trait predictions. J. Near Infrared Spectroscopy 28(5-6), 275-286.
https://doi.org/10.1177/096703....
6.
Banerjee, R., Das Gupta, B., Kar, A., Bhardwaj, P.K., Sharma, N., Haldar, P.K., et al., 2023. Quality evaluation of different black rice varieties of northeastern region of India. Phytochemical Analysis 34(5), 507-517.
https://doi.org/10.1002/pca.32....
7.
Barnaby, J.Y., Huggins, T.D., Lee, H., McClung, A.M., Pinson, S.R., Oh, M., et al., 2020. Vis/NIR hyperspectral imaging distinguishes sub-population, production environment, and physicochemical grain properties in rice. Scientific reports 10(1), 9284.
https://doi.org/10.1038/s41598....
8.
Barnes, R.J., Dhanoa, M.S., Lister, S.J., 1989. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy 43(5), 772-777.
https://doi.org/10.1366/000370....
9.
Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogrammetry Remote Sensing, 114, 24-31.
https://doi.org/10.1016/j.ispr....
10.
Borah, J.L., Tampha, S., Jose, R.C., Chaudhary, S.K., Chetia, S.K., Tamuly, A., et al., 2025. A validated method for identification and quantification of anthocyanins in different black rice (Oryza sativa L.) varieties using high‐performance thin‐layer chromatography (HPTLC). Phytochemical Analysis 36(4) 1268-1277.
https://doi.org/10.1002/pca.35....
11.
Brazil. Normative instruction 2/2012. Ministry of Agriculture, p. and supply. 2012. Brazil. 2/2012. Brazil: [s.n.].
12.
Brazil, Ministry of Agriculture, Livestock and Food Supply. Normative Instruction No. 6, of February 16, 2011. Official rice classification standards. Official Gazette of the Union: section 1, Brasília, DF, February 17, 2011.
13.
Brotman, Y., Llorente-Wiegand, C., Oyong, G., Badoni, S., Misra, G., Anacleto, R., et al., 2021. The genetics underlying metabolic signatures in a brown rice diversity panel and their vital role in human nutrition. Plant J. 106(2) 507-525.
https://doi.org/10.1111/tpj.15....
14.
Brunet-Loredo, A., López-Belchí, M.D., Cordero-Lara, K., Noriega, F., Cabeza, R.A., Fischer, S., et al., 2023. Assessing grain quality changes in white and black rice under water deficit. Plants 12(24), 4091.
https://doi.org/10.3390/plants....
15.
Cao, R., Zhao, S., Jiao, G., Duan, Y., Ma, L., Dong, N., et al., 2022. OPAQUE3, encoding a transmembrane bZIP transcription factor, regulates endosperm storage protein and starch biosynthesis in rice. Plant Communications 3(6), 100463.
https://doi.org/10.1016/j.xplc....
16.
Carneiro, L.O., Coradi, P.C., Rodrigues, D.M., Lima, R.E., Teodoro, L.P.R., Santos de Moraes, R., et al., 2023. Characterizing and predicting the quality of milled rice grains using machine learning models. Agri. Eng. 5(3), 1196-1215.
https://doi.org/10.3390/agrien....
17.
Chen, H., Chen, D., He, L., Wang, T., Lu, H., Yang, F., et al., 2021. Correlation of taste values with chemical compositions and rapid visco analyser profiles of 36 indica rice (Oryza sativa L.) varieties. Food Chemistry 349, 129176.
https://doi.org/10.1016/j.food....
19.
Das, M., Dash, U., Mahanand, S.S., Nayak, P.K., Kesavan, R.K., 2023. Black rice: A comprehensive review on its bioactive compounds, potential health benefits and food applications. Food Chem. Advances 3, 100462.
https://doi.org/10.1016/j.foch....
20.
Draper, N.R., Smith, H., 1998. Applied Regression Analysis (Vol. 326). Wiley and Sons.
21.
Ferreira, D.F., 2019. SISVAR: A computer analysis system to fixed effects split plot type designs. Brazilian J. Biometrics 37(4), 529-535.
https://doi.org/10.28951/rbb.v....
22.
Feyisa, G.L., Palao, L.K., Nelson, A., Gumma, M.K., Paliwal, A., Win, K.T., et al., 2020. Characterizing and mapping cropping patterns in a complex agro-ecosystem: An iterative participatory mapping procedure using machine learning algorithms and MODIS vegetation indices. Computers Electronics in Agric. 175, 105595.
https://doi.org/10.1016/j.comp....
24.
Gao, Y., Zhang, L., Chen, W., Zhou, W., Deng, G., Dai, G., et al., 2024. Cooked Rice textural properties and starch physicochemical properties from new hybrid Rice and their parents. Foods 13(7), 1035.
https://doi.org/10.3390/foods1....
25.
García-Salcedo, Á.J., Fonthal, G., Franco, J.F., Tirado-Mejía, L., 2023. Analysis of compositional differences between commercial rice grains by the study of the photoluminescence response. J. Cereal Sci. 111, 103681.
https://doi.org/10.1016/j.jcs.....
26.
Gogoi, P., Sharma, P., Goudar, G., Mahajan, A., Dutta, H., Sasikumar, R., et al., 2025. Nutritional profile and mineral bioaccessibility of pigmented rice landraces. J. Food Measurement Characterization, 19(2), 1513-1530.
https://doi.org/10.1007/s11694....
27.
Gondal, T.A., Keast, R.S., Shellie, R.A., Jadhav, S.R., Gamlath, S., Mohebbi, M., et al., 2021. Consumer acceptance of brown and white rice varieties. Foods 10(8), 1950.
https://doi.org/10.3390/foods1....
28.
Graves, A., Graves, A., 2012. Long short-term memory. supervised sequence labelling with recurrent neural networks. Springer Nature 37-45.
https://doi.org/10.1007/978-3-....
29.
Grinsztajn, L., Oyallon, E., Varoquaux, G., 2022. Why do tree-based models still outperform deep learning on typical tabular data? Advances in Neural Information Processing Systems, 35, 507-520.
https://proceedings.neurips.cc....
30.
Hashimoto, M., Hossain, S., Matsuzaki, K., Shido, O., Yoshino, K., 2022. The journey from white rice to ultra-high hydrostatic pressurized brown rice: an excellent endeavor for ideal nutrition from staple food. Critical Reviews in Food Science and Nutrition, 62(6), 1502-1520.
https://doi.org/10.1080/104083....
31.
Hazrul, A.F.H., Ibrahim, R.R., Duralim, M., 2025. Discrimination of rice varieties using laser-induced breakdown spectroscopy assisted with principal component analysis (PCA). In J. Physics: Conf. Series 2974(1), 012009. IOP Publishing.
https://doi.org/10.1088/1742-6....
33.
Horwitz, W.C.P.R.H., 1970. Official methods of analysis of the Association of Official Analytical Chemists. Washington, DC, USA: Association of Official Analytical Chemists.
34.
Huber, J., Inoua, S., Kerschbamer, R., König-Kersting, C., Palan, S., Smith, V.L., 2022. Nobel and novice: Author prominence affects peer review. Proc. National Academy of Sciences 119(41), e2205779119.
https://doi.org/10.1073/pnas.2....
35.
Jiang, Q., Zhang, M., Mujumdar, A.S., Wang, D., 2023. Non-destructive quality determination of frozen food using NIR spectroscopy-based machine learning and predictive modelling. J. Food Eng. 343, 111374.
https://doi.org/10.1016/j.jfoo....
36.
Johnson, J.M., Sila, A., Senthilkumar, K., Shepherd, K.D., Saito, K., 2021. Application of infrared spectroscopy for estimation of concentrations of macro-and micronutrients in rice in sub-Saharan Africa. Field Crops Res. 270, 108222.
https://doi.org/10.1016/j.fcr.....
37.
Julcarima, C.B., Rojas Llanos, E.M., 2018. Effect of parboiled on sensorial properties, vitamin and mineral content in rice varieties (Oryza sativa) produced in the country, thesis. 1-142, Cerro De Pasco, Peru.
38.
Kabir, M.S., Kanan, M.K.A., Ahmed, J., Hossain, M.A., Akter, M.S., Ahmed, K.S., et al., 2024. Free and Insoluble-Bound Phenolics in Parboiled and Non-Parboiled Rice after Hydrothermal Treatments. Maruf, Free and Insoluble-Bound Phenolics in Parboiled and Non-Parboiled Rice after Hydrothermal Treatments Plants 8(4).
http://dx.doi.org/10.2139/ssrn....
39.
Kalita, T., Gohain, U.P., Hazarika, J., 2021. Effect of different processing methods on the nutritional value of rice. Current Research in Nutrition and Food Sci. J. 9(2), 683-691.
https://dx.doi.org/10.12944/CR....
40.
Kang, Z., Fan, R., Zhan, C., Wu, Y., Lin, Y., Li, K., et al., 2024. The Rapid non-destructive differentiation of different varieties of rice by fluorescence hyperspectral technology combined with machine learning. Molecules 29(3), 682.
https://doi.org/10.3390/molecu....
41.
Khatun, S., Mollah, M.M.I., 2024. Analysis of black rice and some other cereal grains for protein, sugar, polyphenols, antioxidant and anti-inflammatory properties. J. Agric. Food Res., 16, 101121.
https://doi.org/10.1016/j.jafr....
42.
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 2002. Gradient-based learning applied to document recognition. Proc. IEEE, 86(11), 2278-2324.
https://doi.org/10.1109/5.7267....
43.
Lin, H., Jiang, H., Lin, J., Chen, Q., Ali, S., Teng, S., et al., 2021. Rice freshness identification based on visible near-infrared spectroscopy and colorimetric sensor array. Food Analytical Methods 14, 1305-1314.
https://doi.org/10.1007/s12161....
44.
Liu, X., Wang, W., Li, Z., Xu, L., Lan, D., Wang, Y., 2024. Lipidomics analysis unveils the dynamic alterations of lipid degradation in rice bran during storage. Food Res. Int. 184, 114243.
https://doi.org/10.1016/j.food....
45.
Liu, Y., Li, Y., Peng, Y., Yang, Y., Wang, Q., 2020. Detection of fraud in high‐quality rice by near‐infrared spectroscopy. J. Food Sci. 85(9), 2773-2782.
https://doi.org/10.1111/1750-3....
46.
Liu, Y., Feng, H., Yue, J., Fan, Y., Jin, X., Zhao, Y., et al., 2022. Estimation of potato above-ground biomass using UAV-based hyperspectral images and machine-learning regression. Remote Sensing 14(21), 5449.
https://doi.org/10.3390/rs1421....
47.
Mahmood, N., Liu, Y., Zheng, X., Munir, Z., Pandiselvam, R., Zhang, Y., et al., 2024. Influences of emerging drying technologies on rice quality. Food Res. Int. 184, 114264.
https://doi.org/10.1016/j.food....
48.
Ministry of Agriculture, P.E.A. Approves the technical regulation for rice. Official Gazette of the Union, Brasília. Normative Instruction no. 6. Brazil: [s.n.].
49.
Mudgal, S., Singh, N., 2024. Effect of parboiling treatment times on the physicochemical, cooking, textural, and pasting properties and amino acid, phenolic, and sugar profiles of germinated paddy rice from different rice varieties. J. Food Sci. 89(6), 3208-3229.
https://doi.org/10.1111/1750-3....
50.
Müller, A., Nunes, M.T., Maldaner, V., Coradi, P.C., de Moraes, R.S., Martens, S., et al., 2022. Rice drying, storage and processing: effects of post-harvest operations on grain quality. Rice Sci. 29(1), 16-30.
https://doi.org/10.1016/j.rsci....
51.
Nagy, P., Neff, G., 2024. Conjuring algorithms: Understanding the tech industry as stage magicians. New Media Soc. 26(9), 4938-4954.
https://doi.org/10.1177/146144....
52.
Nirmagustina, D.E., Handayani, S., 2023. Nutritional Content of Brown Rice and White Rice from Organic Rice of Mentik Susu Varieties with Parboiled Method. Int. J. Life Sci. Agric. Res. 2(11), 1.
https://doi.org/10.55677/ijlsa....
53.
Pereira, C.L., Sousa, I., Lourenço, V.M., Sampaio, P., Gárzon, R., Rosell, C.M., et al., 2023. Relationship between physicochemical and cooking quality parameters with estimated glycaemic index of rice varieties. Foods 13(1), 135.
https://doi.org/10.3390/foods1....
54.
Razavi, M., Mavaddati, S., Koohi, H., 2024. ResNet deep models and transfer learning technique for classification and quality detection of rice cultivars. Expert Systems With Aplications 247, 123276.
https://doi.org/10.1016/j.eswa....
55.
Teodoro, P.E., Teodoro, L.P.R., Baio, F.H.R., da Silva Junior, C.A., dos Santos, R.G., Ramos, A.P.M., et al., 2021. Predicting days to maturity, plant height, and grain yield in soybean: A machine and deep learning approach using multispectral data. Remote Sensing 13(22), 4632.
https://doi.org/10.3390/rs1322....
56.
Theiventhiran, T., Vasantha, S., Amutha, J., Ramalingam, G., Hemalatha, Umamaheswari, T., 2020. Screening out the phytochemicals and colour values in white and black rice lines and its interrelationship. Int. J. Biochemistry Res. Revi. 29(3), 34-41.
https://doi.org/10.9734/ijbcrr....
57.
Tunca, E., Köksal, E.S., Öztürk, E., Akay, H., Çetin Taner, S., 2023. Accurate estimation of sorghum crop water content under different water stress levels using machine learning and hyperspectral data. Environ. Monitoring Assessment 195(7), 877.
https://doi.org/10.1007/s10661....
58.
Xu, Y., Dong, Y., Liu, J., Wang, C., Li, Z., 2025. Combination of near infrared spectroscopy with characteristic interval selection for rapid detection of rice protein content. J. Food Composition Analysis 137, 106995.
https://doi.org/10.1016/j.jfca....
59.
Yang, Y., Lin, G., Yu, X., Wu, Y., Xiong, F., 2020. Rice starch accumulation at different endosperm regions and physical properties under nitrogen treatment at panicle initiation stage. Int. J. Biological Macromolecules 160, 328-339.
https://doi.org/10.1016/j.ijbi....
60.
Yoviono, F., Sandra, Y., Arifandi, F., 2022. Comparison of starch content in black rice compared to white rice using the iodide test (in Indonesian). Cerdika: Jurnal Ilmiah Indonesia, 2(11), 976-981.
http://cerdika.publikasiindone....
61.
Zhang, Y., Li, F., Huang, K., Li, S., Cao, H., Xie, J., et al., 2023. Structural changes of starch under different milling degrees affect the cooking and textural properties of rice. Food Chemistry 10(17), 100627.
https://doi.org/10.1016/j.foch....
62.
Zhao, M., Huang, C., Mao, Q., Zhou, Z., Xiang, Y., Zhang, Q., et al., 2021. How anthocyanin biosynthesis affects nutritional value and anti-inflammatory effect of black rice. J. Cereal Sci. 101, 103295.
https://doi.org/10.1016/j.jcs.....
63.
Zheng, W., Zheng, K., Gao, L., Zhangzhong, L., Lan, R., Xu, L., Yu, J., 2024. GRU-transformer: a novel hybrid model for predicting soil moisture content in root zones. Agronomy 14(3), 432.
https://doi.org/10.3390/agrono....
64.
Zhao, X., Zhang, Q., Fang, X., Zhang, J., Feng, W., Zhang, L., Wu, X., 2025. Finite element analysis of corn kernel damage: a viscoelastic model approach for impact‐induced damage prediction. J. Sci. Food Agric. 105(7), 3993-4004.
https://doi.org/10.1002/jsfa.1....