Effect of neutralising substances on reducing the influence of cobalt on the content of selected elements in soil
More details
Hide details
Department of Environmental Chemistry, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, plac Łódzki 4, Poland
Publish date: 2019-02-21
Acceptance date: 2018-11-13
Int. Agrophys. 2019, 33(2): 153–159
The objective of this study was to determine the effect of cobalt on the content of total organic carbon, total nitrogen, the available forms of phosphorus, potassium and magnesium and the C:N ratio in soil, following the application of neutralising substances. The effect of cobalt in soil was tested on oats (Avena sativa L.). In order to limit the effect of cobalt, the soil was enriched with neutralising substances, i.e. manure, clay, charcoal, zeolite and calcium oxide. In the series with no neutralising substance, the increasing doses of cobalt only caused an increase in the amount of the available potassium, and the highest Co dose favoured an increase in the organic carbon content and a wider C:N ratio in soil. All the substances affected the content of the available potassium in soil, with charcoal, and especially manure, contributing to its elevated accumulation. Besides, manure fostered a growth in the soil content of the available phosphorus, charcoal - the content of organic carbon and the available potassium, and zeolite - the total nitrogen content, while calcium oxide promoted a higher content of total nitrogen and the available phosphorus. Clay and charcoal (unlike zeolite) caused the widening of the C:N ratio in soil.
Adamczyk-Szabela D., Romanowska-Duda Z., Lisowska K., and Wolf W.M., 2017. Heavy metal uptake by herbs. V. Metal accumulation and physiological effects induced by thiuram in Ocimum basilicum L. Water Air Soil Pollut., 228, 334.
Alkorta I., Hernández-Allica J., Becerril J., Amezaga I., Albizu I., and Garbisu C., 2004. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev. Environ. Sci. Biotechnol., 3, 71-90.
Aoyama M., and Kumakura N., 2001. Quantitive and qualitative changes of organic matter in an Ando soil induced by mineral fertilizer and cattle manure applications for 20 years. J. Soil Sci. Plant Nut., 47(2), 241-252.
Awomi T. A., Singh A.K., Kumar M., and Bordoloi L.J., 2012. Effect of phosphorus, molybdenum and cobalt nutrition on yield and quality of mungbean (Vigna radiata L.) in acidic soil of Northeast India. Indian J. Hill Farm., 25(2), 22-26.
Balestrazzi A., Bonadei M., Quattrini E., and Carbonera D., 2009. Occurrence of multiple metal-resistance in bacterial isolates with transgenic white poplars (Populus alba L.). Ann. Microbiol., 59, 1-8.
Beak D.G., Kirby J.K., Hettiarachachi G.M., Wendling L.A., McLaughlin M.J., and Khatiwada R., 2011. Cobalt distribution and speciation: effect of aging, intermittent submergence, in situ rice roots. J. Environ. Qual., 40(3), 679-695.
Boom R., 2002. Healthy soil, healthy grass, healthy stock -the balanced approach. Proc. 1st Virtual Global Conf. on Organic Beef Cattle Production, 02.09.-15.10.2002, Concordia, Brazil, 1-13.
Biro K., Pradhan B., Buchroithner M., and Makeschin F., 2013. Land use/land cover change analysis an its impact on soil properties in the Northern part of Gadarif region, Sudan. Land Degrad. Dev., 24, 90-102.
Brodowska M.S., Kurzyna-Szklarek M., and Haliniarz M., 2016. Selenium in the environment. J. Elem., 21(4), 1173-1185.
Cappuyns V., and Mallaerts T., 2014. Background values of cobalt in Flemish and European soils. Geol. Belg., 17(2), 107-114.
Delgado J.A., and Follett R.F., 2002. Carbon and nutrient cycles. J. Soil Water Conserv., 57, 6, 455–464.
Fanin N., Fromin N., Buatois B., and Hättenschwiler S., 2013. An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter microbe system. Ecol. Lett., 16(6), 764-772.
Gad N., 2012. Role and importance of cobalt nutrition on groundnut (Arachis hypogaea) production. World Appl. Sci. J., 20(3), 359-367.
Garba S.T., Osemeahon A.S., Maina H.M., and Barminas J.T., 2012. Ethylenediaminetetraacetate (EDTA)-Assisted phytoremediation of heavy metal contaminated soil by Eleusine indica L. Gearth. J. Environ. Chem. Ecotoxicol., 4(5), 103-109.
Heuck C., Weig A., and Spohn M., 2015. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biol. Biochem., 85, 119-129.
Kabir D., Katkar R.N., and Lakhe S.R., 2014. Georeferenced status of cobalt in soils of yavatmal district of Maharashtra. IOSR J. Agric. Vet. Sci. (IOSR-JAVS), 7(2), 10-13.
Kosiorek M., and Wyszkowski M., 2016a. Selected properties of cobalt-contaminated soil following the application of neutralising substances. Environ. Prot. Natural Res., 27(1), 22-25.
Kosiorek M., and Wyszkowski M., 2016b. Effect of neutralising substances on selected properties of soil contaminated with cobalt. J. Ecol. Eng., 17(3), 193-197.
Lago-Vila M., Arenas-Lago D., Rodríguez-Seijo A., Andrade Couce M.L., and Vega F.A., 2015. Cobalt, chromium and nickel contents in soils and plants from a serpentinite quarry. Solid Earth, 6(1), 323-335.
Li H.F., Gray C., Mico C., Zhao F.J., and McGrath S.P., 2009. Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere, 75(7), 979-986.
Liu Y., Su C., Zhang H., Li X., and Pei J., 2014. Interaction of soil heavy metal pollution with industrialisation and the landscape pattern in Taiyuan city, China. PloS One, 9(9), 1-14.
Luo D., Zheng H., Chen Y., Wang G., and Fenghua D., 2010. Transfer characteristics of cobalt from soil to crops in the suburban areas of Fujian Province, southeast China. J. Environ. Manag., 91(11), 2248-2253.
Mahapatra P.S., Ray S., Das N., Mohanty A., Ramulu T.S., Das T., Chaudhury G.R., and Das S.N., 2013. Urban air-quality assessment and source apportionment studies for Bhubaneshwar, Odisha. Theor. Appl. Climatol., 112(1), 243-251.
Sheppard P.R., Speakman R.J., Ridenour G., Glascock M.D., Farris C., and Witten M.L., 2007. Spatial patterns of tungsten and cobalt in surface dust of Fallon, Nevada. Environ. Geochem. Hlth., 29(5), 405-412.
Šimanský V., and Kováčik P., 2015. Long-term effects of tillage and fertilization on pH and sorption parameters of haplic Luvisol. J. Elem., 20(4), 1033-1040.
StatSoft, Inc., 2014. STATISTICA data analysis software system, version 12.
Symanowicz B., and Kalembasa S., 2012. Effect of iron, molybdenum and cobalt on the amount of nitrogen biologically reduced by Rhizobium galegae. Ecol. Chem. Eng. A, 19(11), 1311-1320.
Temmerman L., Vanongeval L., Boon W., Hoenig M., and Geypens M., 2003. Heavy metal content of arable soils in northern Belgium. Water Air Soil Poll., 148, 61–76.
Tappero R., Peltier E., Gräfe M., Heidel K., Ginder-Vogel M., Livi K.J., Rivers M.L., Marcus M.A., Chaney R.L., and Sparks D.L., 2007. Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol., 175(4): 641-654.
Tsai W.T., Liu S.C., Chen H.R., Chang Y.M., and Tsai Y.L., 2012. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere, 89(2), 198-203.
Wendling L.A., Kirby J.K., and McLaughlin M.J., 2009. Aging effects on cobalt availability in soils. Environ. Toxicol. Chem., 28(8), 1609-1617.
Wright A.L., Provin T.L., Hons F.M., Zuberer D.A., and White R.H., 2007. Compost Skurce and rate effects on soil macronutrient availability under Saint Augustine Grass and Bermuda Grass Turf. Compost Sci. Utiliz., 15, 1, 22-28.
Wyszkowski M., and Modrzewska B., 2016. Development of the selected properties of zinc-contaminated soil following an addition of neutralising substances. Polish J. Soil Sci., XLIX, 2, 101-109.
Wyszkowski M., and Radziemska, M., 2012. Effect of some substances on the content of organic carbon and mineral components in soils contaminated with chromium. Ecol . Chem. Eng., A, 19, 4-5, 361–368.
Wyszkowski M., and Sivitskaya V., 2012. Changes in the content of organic carbon and available forms of macronutrients in soil under the influence of soil contamination with fuel oil and application of different substances. J. Elem., 17(1), 139-148.
Zaborowska M., Kucharski J., and Wyszkowska J., 2016. Biological activity of soil contaminated with cobalt, tin and molybdenum. Environ. Monit. Assess., 188(7), 398, 1-10.
Zupančič N., and Skobe S., 2014. Antropogenic environment al impact in the Mediterranean coastal area of Koper/Capodistria, Slovenia. J. Soils Sediment., 14(1), 67-77.