Effects of UV-C light and Spirulina maxima seed conditioning on the germination and the physical and nutraceutical properties of lentils (Lens culinaris)
More details
Hide details
Postgraduate Programme in Systems Engineering-Biophysical Systems, National Polytechnic Institute, Av. Instituto Politecnico Nacional, 07738, Ciudad de Mexico, Mexico
Food Postgraduate Program of the Center of the Republic (PROPAC), Autonomous University of Queretaro, University Center, Cerro de las Campanas s/n, Querétaro C.P. 76000, Mexico
Academic Unit of Physics, Autonomy University of Zacatecas, A.P. 580, Zacatecas, Mexico
FES-Cuautitlán, U.N.A.M., Departament of Engineering and Technology and Mathematics, San Sebastian Xhala, C.P. 54714 State of Mexico, Mexico
Department of Physics, Cinvestav-IPN, A.P. 14-740. 07360, Mexico City, Mexic
Final revision date: 2022-10-20
Acceptance date: 2022-10-24
Publication date: 2023-01-02
Corresponding author
Claudia Hernandez-Aguilar   

Postgraduate Programme in Systems Engineering-Biophysical Systems., National Polytechnic Institute, Av. Instituto Politecnico Nacional, 07738, Ciudad de Mexico, Mexico
Int. Agrophys. 2023, 37(1): 15–26
  • The priming cyanobacteria Spirulina improve the physiological quality against damage caused by UV-C radiation.
  • Total flavonoids of UV-C treated lentils increased significantly.
  • Morphological changes of lentil occur due to radiation, applying UV-C for 10 min the cell wall and protein body are damaged
The aim of this research was to evaluate the effects of UV-C light on lentil (Lens culinaris) and its conditioning by Spirulina. The main findings were: (i) Lentil brightness presented a significant slight variation (9%) when compared to the control (T0) and UV-C (T10 = 10 min) irradiated lentil samples. (ii) The total flavonoids tended to increase by 17% at 10 min (49.18 μg mL-1) compared to T0 (42.07 μg mL-1). (iii) The conditioning of lentils with UV-C (0, 5, and 10 min) and the imbibition in water with Spirulina (0, 0.5, 0.75, and 1.5%) generated significant statistical differences (p ≤ 0.05) in the seedlings. The priming cyanobacteria Spirulina improved the physiological quality against damage caused by UV-C radiation. (iv) Morphological changes occurred in the lentils due to radiation, damage in the testa (protective layer on the outside) area (row 1) due to the application of UV-C was found, which increases with higher exposure to radiation. Through the application of UV-C for 10 min the cell wall and protein body were damaged. However, no damage to the starch is visible. (v) FT-IR indicates that the UV-C radiation did not induce any change in the chemical structure of the starch but, decreases in intensity within the range of 3 000-3 600 cm-1 indicated differences in their water content, while those between 1 600-1 700 cm-1 were attributed to the reorganization of the secondary structure of proteins.
The authors declare no conflict of interest.
Aarland R.C., Peralta-Gómez S., Sanchéz C.M., Parra-Bustamante F., Villa-Hernández J.M., De León Sánchez F.D., Pérez-Flores L.J., Rivera-Cabrera F., and Mendoza-Espinoza J.A., 2015. A pharmacological and phytochemical study of medicinal plants used in Mexican folk medicine. Indian J. Tradit Knowl., 14, 550-557.
Ahmed J., Mulla M., Al‐Ruwaih N., and Arfat Y.A., 2019. Effect of high‐pressure treatment prior to enzymatic hydrolysis on rheological, thermal, and antioxidant properties of lentil protein isolate. Legume Science, 1, 1-e10. http://doi:10.1002/leg3.10.
Andary C., 1990. Documentation chimique et pharmaceutique pour I’AMM du MERALOPS comprimés. Laboratoire Allergan-Dutcis, Monaco, France.
AOAC, 1990. Official Methods of Analysis. Association of Official Analytical Chemists, Washington, DC.
Bera K., Dutta P., and Sadhukhan S., 2022. Seed priming with non-ionizing physical agents: plant responses and underlying physiological mechanisms. Plant Cell Rep., 41, 53-73.
Chua S.C., Malek M.A., Chong F.K., Sujarwo W., and Ho Y.C., 2019. Red lentil (Lens culinaris) extract as a novel natural coagulant for turbidity reduction: An evaluation, characterization and performance optimization study. Water, 11, 8-1686.
Debnath S., 2020. Low cost homemade system to disinfect food items from SARS-CoV-2. J. Medical Systems, 44, 1-2.
Guajardo‐Flores D., Serna‐Guerrero D., Serna‐Saldívar S.O., and Jacobo‐Velázquez D.A., 2014. Effect of germination and UV‐C radiation on the accumulation of flavonoids and saponins in black bean seed coats. Cereal Chem., 91, 276-279.
Gul K., Singh A., and Sonkawade R., 2016. Physicochemical, thermal, and pasting characteristics of gamma irradiated rice starches. Int. J. Biol. Macromol., 85, 460-466.
Hernandez-Aguilar C., Dominguez-Pacheco A., Palma Tenango M., Valderrama-Bravo C., Soto Hernández M., Cruz-Orea A., and Ordonez-Miranda J., 2020. Lentil sprouts: a nutraceutical alternative for the elaboration of bread. J. Food Sci. Technol., 57, 1817-1829.
Hernández-Aguilar C., Domínguez-Pacheco A., Tenango M.P., Valderrama-Bravo C., Hernández M.S., Cruz-Orea A., and Ordonez-Miranda J., 2022a. Characterization of bean seeds, germination, and phenolic compounds of seedlings by UV-C radiation. J. Plant Growth Regul., 40, 642-655.
Hernandez-Aguilar C., Valderrama-Bravo C., Dominguez-Pacheco A., Romero-Galindo R., Igno-Rosario O., Contreras-Gallegos E., Tsonchev R.I., and Cruz-Orea A., 2022b. Colorimetric characterization, texture and sanitary quality of breads added with Creole corns and Curcuma longa (in Spanish). Superficies y Vacío, 35, 1-18.
Huché-Thélier L., Crespel L., Le Gourrierec J., Morel P., Sakr S., and Leduc N., 2016. Light signaling and plant responses to blue and UV radiations – Perspectives for applications in horticulture. Environ. Exp. Bot., 121, 22-38.
Jiao S., Johnson J.A., Tang J., and Wang S., 2012. Industrial-scale radio frequency treatments for insect control in lentils. J. Stored Prod. Res., 48, 143-148.
Khazaei H., Subedi M., Nickerson M., Martínez-Villaluenga C., Frias J., and Vandenberg A., 2019. Seed protein of lentils: Current status, progress, and food applications. Foods, 8, 391-419.
Kizil R., Irudayaraj J., and Seetharaman K., 2002. Charac-terization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. J. Agric. Food Chem., 50, 3912-3918.
Kuan Y.H., Bhat R., and Karim A.A., 2011. Emulsifying and foaming properties of ultraviolet-irradiated egg white protein and sodium caseinate. J. Agric. Food Chem., 59, 4111-4118. https://doi:10.1021/jf104050k.
Lazim S.K., and Nasur A.F., 2017. The effect of magnetic field and ultraviolet-C radiation on germination and growth seedling of sorghum (Sorghum bicolor L. Moench). IOSR J. Agric. Vet. Sci. (IOSR-JAVS), 10, 30-36. https://doi: 10.9790/2380-1010023036.
Liu C., Zheng H., Sheng K., Liu W., and Zheng L., 2018. Effects of postharvest UV-C irradiation on phenolic acids, flavonoids, and key phenylpropanoid pathway genes in tomato fruit. Scientia Horticulturae, 241, 107-114.
Meléndez-Martínez A.J., Mandić A.I., Bantis F., Böhm V., Borge G.I. A., Brnčić M., Bysted A., Pilar Cano M., Graça Dias M., Elgersma A., Fikselová M., García-Alonso J., Giuffrida D., Gonçalves V.S.S., Hornero-Méndez D., Kljak K., Lavelli V., Manganaris G.A., Mapelli-Brahm P., Marounek M., Olmedilla-Alonso B., Periago-Castón M.J., Pintea A., Sheehan J.J., Tumbas Šaponjac V., Valšíková-Frey M., Van Meulebroek L., and O’Brien N., 2022. A comprehensive review on carotenoids in foods and feeds: Status quo, applications, patents, and research needs. Crit. Rev. Food Sci. Nutr., 62, 1999-2049.
Mógor A.F., Ördög V., Lima G.P.P., Molnar Z., and Mógor G., 2018. Biostimulant properties of cyanobacterial hydrolysate related to polyamines. J. Appl. Phycol., 30, 453-460.
Muhammad A.R., Muhammad A.F., Issa Moazzam R.K., Pasha I., and Nadeem M., 2013. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties. Food Sci. Technol., 50, 1018-1023.
Nasar-Abbas S.M., Siddique K.H.M., Plummer J.A., White P.F., Harris D., Dods K., and D’antuono M., 2009. Faba bean (Vicia faba L.) seeds darken rapidly and phenolic content falls when stored at higher temperature, moisture and light intensity. LWT-Food Sci. Technol., 42, 1703-1711.
Park M.H. and Kim J.G., 2015. Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biol. Technol., 100, 109-112.
Poiroux-Gonord F., Bidel L.P.R., Fanciullino A.L., Gautier H., Lauri-Lopez F., and Urban L., 2010. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J. Agric. Food Chem., 58, 12065-12082.
Romero-Galindo R., Hernandez-Aguilar C., Domínguez-Pacheco A., Godina-Nava J.J., and Tsonchev R.I., 2021. Biophysical methods used to generate tolerance to drought stress in seeds and plants: a review. Int. Agrophys., 35, 389-410.
SAS, 2008. Statistical Analysis System for Windows. Release 8.01. SAS Institute Inc., Cary, N. C. USA.
Urban L., Charles F., de Miranda M.R.A., and Aarrouf J., 2016. Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. Plant Physiol. Biochem., 105, 1-11.