Effects of mechanical differences in sugarcane on the quality of mechanical harvesting
Zhi Li 1
More details
Hide details
College of Agriculture National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
Final revision date: 2022-10-05
Acceptance date: 2022-10-24
Publication date: 2023-01-16
Corresponding author
Hua Zhang   

College of Agriculture National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
Int. Agrophys. 2023, 37(1): 27–40
  • Dynamic resistance strain gauge and other equipment measured different sugarcane varieties' related mechanical properties parameters.
  • Use Ansys to simulate the force of the stalk during sugarcane harvesting and the quality of the cut section.
  • Obtaining the regression equation and the optimal mechanical parameters of sugarcane.
  • Experiments use field harvesting to validate model results.
The mechanization of the whole process of sugarcane harvesting is an integral part of reducing the cost of sugarcane production. In order to select sugarcane strains suitable for mechanized harvesting, in this experiment, a dynamic resistance strain gauge and other equipment determined the related mechanical property parameters such as density, elastic modulus, and Poisson's ratio of different sugarcane varieties. Ansys/explicit dynamics were used to establish a finite element model of the disc cutting device and to simulate the forces exerted on the stalk during sugarcane harvesting and also the quality of the cut section. Then, after obtaining the regression equation analysis and the response surface through the cross-section mass, the field harvesting experiment verifies the simulation results. The results show that the density, elastic modulus, and Poisson's ratio significantly affect the cutting quality within the three types of mechanical parameters. Through response surface analysis, when the elastic modulus is 92 MPa, the density is 1145 kg m–3, the Poisson's ratio is 0.404, the best cutting quality was obtained, and the section flatness is 57.09%. According to the cross-sectional regression equation, the calculation results are as follows: Liucheng 05-136 > Yuetang 94-128 > Guitang 42, which is the same as the actual harvest quality results under the two planting modes. This indicated that the difference in the mechanical properties of the sugarcane would significantly affect the quality of mechanical harvesting, which provides a reference direction for selecting sugarcane varieties suitable for mechanized harvesting.
The authors declare no conflict of interest
Araujo G.D.M., Lima Dos Santos F.F., Hatum De Almeida S.L., Martins R.N., Voltarelli M.A., Strini Paixao C.S., and de Carvalho Pinto F.D.A., 2021. Sugarcane harvesting quality by digital image processing. Sugar Tech., 23, 209-218,
Bachmann Schogor A.L., Nussio L.G., Mourao G.B., Muraro G.B., Sarturi J.O., and de Matos B.D.C., 2009. Losses in sugarcane submitted to different harvesting methods. Braz. J. Anim. Sci., 38, 1443-1450,
Bahadori T. and Norris S., 2018. Optimisation of farm management for reducing cane losses during mechanised sugarcane harvesting by using SCHLOT software model. Int. Sugar J., 120, 462-464.
Cao Y., Li M., Wang Z., Wang Y., and Gao Z., 2019. Dynamic testing and analysis of Poisson's ratio of lumbers based on the cantilever-plate bending mode shape method. J. Test. Eval., 47, 2540-2550,
Celik H.K., Cinar R., Yilmaz D., Ulmeanu M., Rennie A.E.W., and Akinci I., 2019. Mechanical collision simulation of potato tubers. J. Food Process Eng., 42, 1-7,
Chan W., Fu M., and Lu J., 2011. The size effect on micro deformation behaviour in micro-scale plastic deformation. Mat. Des., 32, 198-206,
Chen X., Tang L., Liu B., Lv L., Yang M., and Yang J., 2018. Dynamic analysis and simulation of the cutting system of sugarcane harvester. J. Chin. Agric. Mech., 39, 27-30,
Damann K., 1992. Effect of sugarcane cultivar susceptibility on spread of ratoon stunting disease by the mechanical harvester. Plant Disease, 76, 1148-1149,
Deng W., Wang C., and Xie S., 2021. Collision simulation of potato on rod separator. Int. J. Food Engin., 17, 435-444,
Dobrzański B. and Szot B., 1997. Mechanical properties of pea seed coat. Int. Agrophys., 11, 301-306.
Dong P., Xie R., Wang K., Ming B., Hou P., Hou J., Xue J., Li C., and Li S., 2020. Kernel crack characteristics for X-ray computed microtomography (μCT) and their relationship with the breakage rate of maize varieties. J. Integr. Agric., 19, 2680-2689,
Fu Z., Wang D., Li W., Huang Y., and Zhu R., 2018. Design and experiment of two-disc rotary mower of alfalfa. Trans. Chin. Soc. Agric. Machin., 49, 214-220.
Golpira H., 2013. Conceptual design of a chickpea harvesting header. Span. J. Agric. Res., 11, 635-641,
Guo J., Karkee M., Yang Z., Fu H., Li J., Jiang Y., Jiang T., Liu E., and Duan J., 2021. Research of simulation analysis and experimental optimization of banana de-handing device with self-adaptive profiling function. Comput. Electron. Agric., 185, 2-24,
Guttman L. and Rothstein J., 1979. Computation of elastic-moduli from inter-atomic forces. Phys. Rev. B., 19, 6062-6067,
Haman J., Dobrzański B., Szot B., and Stępniewski A., 1994. Strength of shell in compression test of rapeseed. Int. Agrophys., 8, 245-250.
Hoshyarmanesh H., Dastgerdi H.R., Ghodsi M., Khandan R., and Zareinia K., 2017. Numerical and experimental vibration analysis of olive tree for optimal mechanized harvesting efficiency and productivity. Comput. Electron. Agric., 132, 34-48,
Hou J., Bai J., Yao E., and Zhu H., 2020. Design and parameter optimization of disc type cutting device for castor stem. IEEE Access. 8, 191152-191162,
Hu D., Zheng Y., and Zhao Y., 2016. Movement simulation of sugarcane harvester cutter based on ANSYS/LS-DYNA. Proc. 2016 Int. Conf. Engin. Sci. Manag. (ESM), 62, 268-271,
Huang H., Wang Y., Tang Y., Zhao F., and Kong X., 2011. Finite element simulation of sugarcane cutting. Editorial Office of Transactions of the Chinese Society of Agricultural Engineering, 27, 161-166.
Jakob M. and Geyer M., 2021. Fruit removal forces of early stage pickling cucumbers for harvest automation. Int. Agrophys., 35, 25-30,
Kalantari D., Jafari H., Kaveh M., Szymanek M., Asghari A., Marczuk A., and Khalife E., 2022. Development of a machine vision system for the determination of some of the physical properties of very irregular small biomaterials. Int. Agrophys., 36, 27-35,
Kang S., Kim J., Kim Y., Wooseungmin., Daniel D.U., and Ha Y., 2020. A simulation study on the dynamics characteristics of hot pepper harvester. J. Korea Soc. Simul., 29, 19-25,
Lai X., Li S., Ma F., Zhou J., and Zhang Z., 2011. Dynamical analysis on sugarcane cutter rigidity enhancement. Adv. Mech. Des., 199-200, 1387,
Li Y., Chen Y., Ding Q., He R., and Ding W., 2022. Analysis of relationship between head rice yield and breaking force of Japonica rice grains at different maturity stages. Int. Agrophys., 36, 1-11,
Li Z., Zhang Z., and Thomas C., 2016. Viscoelastic-plastic behavior of single tomato mesocarp cells in high speed compression-holding tests. Innov. Food Sci. Emerg. Technol., 34, 44-50,
Liu J., Yuan Y., Gao Y., Tang S., and Li Z., 2019. Virtual model of grip-and-cut picking for simulation of vibration and falling of grape clusters. Trans. ASABE, 62, 603-614,
Lv Y., Yang J., Liang Z., Mo J., and Qiao Y., 2008. Simulative kinematics analysis on the affecting factors of rate of broken biennial root of single base cutter of sugarcane harvester. Trans. Chin. Soc. Agric. Mach., 6, 50-55.
Mirzabe A.H. and Hajiahmad A., 2021. Physico-mechanical properties of unripe grape berries relevant in the design of juicing machine. J. Food Process Engin., 44, 1-22,
Ou Y., Wegener M., Yang D., Liu Q., Zheng D., Wang M., and Liu H., 2013. Mechanization technology: The key to sugarcane production in China. Int. J. Agric. Biol. Engin., 6, 1-27,
Qing Y., Li Y., Xu L., and Ma Z., 2021. Screen oilseed rape (Brassica napus) suitable for low-loss mechanized harvesting. Agriculture-Basel, 11, 1-13,
Qin J., Yin Y., Liu Z., Du Y., Wang G., Zhu Z., and Li Z., 2020. Optimisation of maize picking mechanism by simulation analysis and high-speed video experiments. Bios. Engin., 189, 84-98,
Qiu M., Meng Y., Li Y., and Shen X., 2021. Sugarcane stem cut quality investigated by finite element simulation and experiment. Bios. Engin., 206, 135-149,
Santos F.L., de Queiroz D.M., Magalhaes Valente D.S., and de Freitas Coelho A.L., 2015. Simulation of the dynamic behavior of the coffee fruit-stem system using finite element method. Acta Sci. Technol., 37, 11-17,
Seflek A.Y., 2017. Determining the physico-mechanical characteristics of maize stalks for designing harvester. J. Anim. Plant Sci., 27, 855-860.
Staab G.H., 2015. 2 - A review of stress–strain and material behavior. In: Laminar Composites (Ed. G.H. Staab). Butterworth-Heinemann, 17-36,
Wang F., Han H., Lin H., Chen B., Kong X., Ning X., Wang X., Yu Y., and Liu J., 2019. Effects of planting patterns on yield, quality, and defoliation in machine-harvested cotton. J. Integr. Agric., 18, 2019-2028,
Wang F., Ma S., Ke W., Xing H., and Bai J., 2020. Energy consumption of sugarcane basecutting using contra-rotating basecutters. Trans. ASABE, 63, 317-324,
Wang F., Ma S., Ke W., Xing H., Bai J., Hu J., Yang Y., and Wei Y., 2021. Optimization of basecutter structural parameters for under-the-ground sugarcane basecutting. Appl.Engin. Agric., 37, 233-242,
Wang R., Zheng S., and Zheng Y., 2011. Elementary mechanical properties of composite materials. In: Polymer Matrix Composites and Technology (Eds R. Wang,  S. Zheng, and Y. Zheng). Woodhead Publishing, 357-548,
Wang Y., Li L., Gao S., Guo Y., Zhang G., Ming B., Xie R., Xue J., Hou P., Wang K., and Li S., 2020. Evaluation of grain breakage sensitivity of maize varieties mechanically-harvested by combine harvester. Int. J. Agric. Biol. Engin., 13, 8-16,
Xing H., Ma S., Wang F., Bai J., and Ma J., 2021. Aerodynamic performance evaluation of sugarcane harvester extractor based on CFD. Sugar Tech., 23, 627-633,
Yang W., Wang E., Yang J., Li Y., Huang S., and Liang Z., 2017. Test on influencing factors of cutting sugarcane quality of Case A8000 sugarcane combine harvester. J. Agric. Mech. Res., 39, 192-196,
Yilmaz D., Kabas O., Akinci I., and Cagirgan M.I., 2009. Strength and deformation parameters of sesame stalk in relation to harvest. Philipp. Agric. Sci., 92, 85-91.
Yuan Z., Zhang X., Xu G., and Zhao X., 2012. The influences of the stem structure and elastic modulus on wheat lodging. Natur. Res. Sustain. Dev., 524-527, 2330-2333,
Zhao L., Chen L., Yuan F., and Wang L., 2022. Simulation study of rice cleaning based on DEM-CFD coupling method. Processes,, 281. 10.3390/pr10020281.
Zheng C., Wang Y., Yuan S., Yu X., Yang G., Yang C., Yang D., Wang F., Huang J., and Peng S., 2022. Effects of skip-row planting on grain yield and quality of mechanized ratoon rice. Field Crops Res., 285, 1-11,
Zuidema J., Loopstra O., and Vansoest T., 1983. The (pseudo) isotropic young modulus, rigidity modulus and poisson ratio of anisotropic rolled sheets. Int. J. Mat. Res., 74(10), 643-651,