REVIEW PAPER
Biophysical methods used to generate tolerance to drought stress in seeds and plants: a review
 
More details
Hide details
1
National Polytechnic Institute, Sepi-Esime-Zacatenco, Programme in Systems Engineering-Biophysical systems, Professional Unit ‘Adolfo López Mateos’, Alcaldía GAM, Col. Lindavista, CP 07738, Mexico City, Mexico
 
2
Department of Physics, Cinvestav-IPN, A. P. 14-740. 07360, Mexico City, Mexico
 
3
Academic Unit of Physics, Autonomy University of Zacatecas, A.P. 580, Zacatecas, Mexico
 
 
Final revision date: 2021-12-08
 
 
Acceptance date: 2021-12-14
 
 
Publication date: 2022-01-05
 
 
Corresponding author
Claudia Hernandez-Aguilar   

en Ingeniería de Sistemas, Instituto Politécnico Nacional, SEPI-ESIME-Zacatenco, Av. IPN, S/N, UPALM, Alc. GAM, Col. Lindavista, 07738, Ciudad de Mexico, Mexico
 
 
Int. Agrophys. 2021, 35(4): 389-410
 
HIGHLIGHTS
  • The most used physical methods have favorable effects on seeds and plants,
  • Physical method treatments increase or decrease physicochemical properties in seeds and plants,
  • Treatments with UV light radiation and different magnetic fields are the ones that produce the most effects on plants and seeds,
KEYWORDS
TOPICS
ABSTRACT
Drought stress has serious repercussions for agriculture, affecting crop growth with low yield effects concerning food production and food security. The main objective of this research is to conduct a scientific literature review of the physical methods used to generate tolerance to water stress in crops. (i) The most widely applied physical method to counteract the effects of drought stress is UV radiation, magnetic field application (18%), He-Ne and CO2 laser (18%), gamma radiation (9%) and plasma (6%). (ii) Treatments with ultraviolet light and magnetic fields have been applied mainly in cereals, vegetables, legumes, medicinal plants, and trees. Also, He-Ne, CO2 laser, and plasma in seeds in cereals and medicinal plants in the pre-sowing stage to seed level. Finally, gamma radiation has been applied to plants and seeds (grass, flowers, sugar plant). (iii) The reported physical methods can increase or decrease the biochemical variables under water stress depending on the physical method and radiation parameters applied, as well as the crop, level of drought and the environment in which the plants develop. Thus, UV radiation, magnetic fields, gamma radiation, and He-Ne and CO2 lasers are physical methods that produce seed and plant improvement effects.
 
REFERENCES (108)
1.
Agathokleous E., Kitao M., and Calabrese E.J., 2019. Hormesis: a compelling platform for sophisticated plant science. Trends Plant. Sci., 24, 318-327. https://doi.org/10.1016/j.tpla....
 
2.
Alexieva V., Sergiev I., Mapelli S., and Karanov E., 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ., 24, 1337-44. https://doi.org/10.1046/j.1365....
 
3.
Ali S.I., Gaafar A.A., Metwally S.A., and Habba I.E., 2020. The reactive influences of pre-sowing He-Ne laser seed irradiation and drought stress on growth, fatty acids, phenolic ingredients, and antioxidant properties of Celosia argentea. Sci. Hortic., 261, 108989. https://doi.org/10.1016/j.scie....
 
4.
Amini S., Ghobadi C., and Yamchi A., 2015. Proline accumulation and osmotic stress: an overview of P5CS gene in plants. Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), 3, 44-55.
 
5.
Anders K. and Essen L.O., 2015. The family of phytochrome-like photoreceptors: diverse, complex and multi-colored, but very useful. Curr. Opin. Struct. Biol., 35, 7-16. https://doi.org/10.1016/j.sbi.....
 
6.
Arreguin Cortes F.I., Garcia Villanueva N.H., Gonzalez Casillas A., and Guillen Gonzalez J.A., 2019. Reforms in the administration of irrigation systems: Mexican experiences. Irrig. Drain, 68, 6-19. https://doi.org/10.1002/ird.22....
 
7.
Azadi H., Keramati P., Taheri F., Rafiaani P., Teklemariam D., Gebrehiwot K., Hosseininia G., Van Passel S., Lebailly P., and Witlox F., 2018. Agricultural land conversion: Reviewing drought impacts and coping strategies. Int. J.Disaster Risk Sci., 31, 184-195. https://doi.org/10.1016/j.ijdr....
 
8.
Baghel L., Kataria S., and Guruprasad K.N., 2018. Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica, 56, 718-30. https://doi.org/10.1007/s11099....
 
9.
Balakumar T., Vincent V.H.B., and Paliwal K., 1993. On the Interaction of UV‐B Radiation (280-315 Nm) with Water Stress in Crop Plants. Physiol. Plant, 87, 217-22. https://doi.org/10.1111/j.1399....
 
10.
Basahi J., 2014. Effects of Enhanced UV-B Radiation and Drought stress on photosynthetic performance of lettuce (Lactuca sativa L. Romaine) plants. Annu. Rev. Cell. Biol., 4, 1739-56. https://doi.org/10.9734/arrb/2....
 
11.
Borthwick H.A., Hendricks S.B., Parker M.W., Toole E.H., and Toole V.K., 1952. A reversible photoreaction controlling seed germination. Proc. National Academy Sci., 38, 662-666. https://doi.org/10.1073/pnas.3....
 
12.
Cohen S.D. and Kennedy J.A., 2010. Plant metabolism and the environment: implications for managing phenolics. Crit. Rev. Food Sci. Nutr., 50, 620e643. https://doi.org/10.1080/104083....
 
13.
Damalas C.A., Koutroubas S.D., and Fotiadis S., 2019. Hydro-priming effects on seed germination and field performance of faba bean in spring sowing. Agriculture, 9, 201. https://doi.org/10.3390/agricu....
 
14.
Danon A. and Gallois P., 1998. UV-C radiation induces apoptotic-like changes in Arabidopsis thaliana. FEBS letters, 437, 131-136. https://doi.org/10.1016/S0014-....
 
15.
Datta K. and Nanda K., 1985. Effect of some phenolic compounds and gibberellic acid on growth and development of cheena millet (Panicum miliaceum L.). Indian J. Plant Physiol., 28, 298-302.
 
16.
De Souza-Torres A., Casate R., and Porras E., 1999. Effect of magnetic treatment of tomato seeds (Lycopersicon esculentum Mill.) on germination and seedling growth (in Spanish). Invest. Agr. Prod. Prot. Veg., 14(3), 67-74.
 
17.
De Souza-Torres A., Garcí D., Sueiro L., Gilart F., Porras E., and Licea L., 2006. Pre‐sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics: J. Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 27, 247-257. https://doi.org/10.1002/bem.20....
 
18.
Desikan R., Cheung M.K., Bright J., Henson D., Hancock J.T., and Neill S.J., 2004. ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. J. Exp. Bot., 55, 205-212. https://doi.org/10.1093/jxb/er....
 
19.
Dichio B.C., Xiloyannis V., Nuzzo G., Montanaro M., and Palese A.M., 2004. Postharvest regulated deficit irrigation of peach tree in a Mediterranean environment: Effects on vegetative growth and yield. Irrig. Hort. Crops Acta Hort., 664, 169-174. https://doi.org/10.17660/ActaH....
 
20.
Dillard H.R., 2019. Global Food and Nutrition Security: From Challenges to Solutions August 2018 with the Title Plant Health in a Global Economy, 249, 52. https://doi.org/10.1007/s12571....
 
21.
Domínguez Pacheco A., Hernández Aguilar C., Cruz Orea A., Carballo Carballo A., Zepeda Bautista R., and Martínez Ortíz E. M., 2010. Influence of the electromagnetic field in maize seed vigor. Rev. Fitotec., 33, 183-188. https://doi.org/10.35196/rfm.2....
 
22.
El-Khateeb M.A., Eid R.A., Mahfouze H.A., Ashor H.A., and Mabrouk R.M., 2017. Induction of mutation with gamma radiation in Helichrysum bracteatum L. and identification of mutants by molecular markers. Middle East J. Agric. Res., 6, 282-293.
 
23.
El-Sallami I.H., Abdul-Hafeez E.Y., Mostafa G., and Gad M.S., 2019. Enhancement of drought tolerance in Salvia coccinea plants by irradiation with gamma and laser pre-treatments. Assiut J. Agric. Sci., 50, 102-3. https://doi.org/10.21608/ajas.....
 
24.
Eşitken A. and Turan M., 2004. Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. camarosa). Acta Agric. Scand. B Soil Plant Sci., 54, 135-139. https://doi.org/10.1080/090647....
 
25.
Evenari M., 1984. Seed physiology: From ovule to maturing seed. The Botanical Review, 50, 143-170. https://doi.org/10.1007/BF0286....
 
26.
FAO, 2014. Coping with Water Scarcity in the Near East and North Africa Fact Sheet - Regional Conf. Near East (NERC-32), Rome, Italy.
 
27.
Feng H., Li S., Xue L., An L., and Wang X., 2007. The interactive effects of enhanced UV-B radiation and soil drought on spring wheat. S. Afr. J. Bot., 73, 429-34. https://doi.org/10.1016/j.sajb....
 
28.
Fitton N., Alexander P., Arnell N., Bajzelj B., Calvin K., Doelman J., Gerber J.S., Avlik P., Hasegawa T., Herrero M., Krisztin T., Van Meijl H., Powellm T., Sandsn R., Stehfest E., West P.C., and Smith P., 2019. The vulnerabilities of agricultural land and food production to future water scarcity. Glob Environ. Change, 58, 101944. https://doi.org/10.1016/j.gloe....
 
29.
Flint L.H. and Mcalister E.D., 1935. Wave Lengths of radiation in the visible spectrum inhibiting the germination of light-sensitive lettuce seed. In: Smithsonian Miscellaneous Collections. Smithsonian Inst. Misc. Coll, 94, 1-11.
 
30.
Flórez M., Carbonell M.V., and Martínez E., 2007. Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environ. Exp. Bot., 59, 68-75. https://doi.org/10.1016/j.enve....
 
31.
Garcia-Reina F. and Arza-Pascual L., 2001. Influence of a stationary magnetic field on water relations in lettuce seeds. Part I: theoretical considerations. Bioelectromagnetics, 22, 589-595. https://doi.org/10.1002/bem.88.
 
32.
Gudkov S.V., Grinberg M.A., Sukhov V., and Vodeneev V., 2019. Effect of ionizing radiation on physiological and molecular processes in plants. J. Environ. Radioact., 202, 8-24. https://doi.org/10.1016/j.jenv....
 
33.
Guo Q., Wang Y., Zhang H., Qu G., Wang T., Sun Q., and Liang D., 2017. Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci. Rep., 7, 1-14. https://doi.org/10.1038/s41598....
 
34.
Habibi G. and Hajiboland R., 2011. Comparison of water stress and UV radiation effects on induction of CAM and antioxidative defense in the succulent Rosularia Elymaitica (Crassulaceae). Acta Biol. Crac. Ser Bot. 53, 15-24. https://doi.org/10.2478/v10182....
 
35.
Hamideldin N. and Eliwa N.E., 2015. Gamma radiation and sodium azide influence on physiological aspects of maize under drought condition. Basic Rese. J. Agric. Sci. Review, 4, 5-13.
 
36.
Hernández-Aguilar C.C., Carballo C.A., Artola A., and Michtchenko A., 2006. Laser irradiation effects on maize seed field performance. Seed Sci. Technol., 34(1), 193-197. https://doi.org/10.15258/sst.2....
 
37.
Hernández-Aguilar C., Domínguez-Pacheco A., Carballo A. C., Cruz-Orea A., Ivanov R., Bonilla J.L.L., and Montañez J.P.V., 2009a. Alternating magnetic field irradiation effects on three genotype maize seed field performance. Acta Agrophysica, 14(1), 7-17.
 
38.
Hernández-Aguilar C., Dominguez-Pacheco A., Cruz-Orez A., Ivanov R., Carballo-Carballo A., Zepeda-Bautista R., and Galindo Soria L., 2009b. Laser irradiation effects on field performance of maize seed genotypes. Int. Agrophys., 23, 327-332.
 
39.
Hernández-Aguilar C., Domínguez P.A., Cruz O.A., Ivanov R., Carballo C.A., and Zepeda B.R., 2010. Laser in agriculture. Int. Agrophysics, 24, 407-422.
 
40.
Hernández-Aguilar C., Domínguez-Pacheco A., Cruz-Orea A., Podleśna A., Rumen I., Carballo Carballo A., Pérez Reyes M.C., Sánchez Hernández G., Zepeda Bautista R., López-Bonilla J.L., 2016. Bioestimulación Láser En Semillas y Plantas. Gayana - Botanica, 73, 132-49. https://doi.org/10.4067/S0717-....
 
41.
Hernández-Aguilar C., Domínguez-Pacheco A., Tenango M.P., Valderrama-Bravo C., Hernández M.S., Cruz-Orea A., and Ordonez-Miranda J., 2021a. Characterization of bean seeds, germination, and phenolic compounds of seedlings by UV-C radiation. J. Plant Growth Regul., 40(2), 642-655. https://doi.org/10.1007/s00344....
 
42.
Hernández-Aguilar C., Palma-Tenango M., Miguel-Chavez R.S., Dominguez-Pacheco A., Soto-Hernández M., del Carmen Valderrama Bravo M., Ivanov R., and Ordoñez-Miranda J., 2021b. Induced changes of phenolic compounds in turmeric bread by UV-C radiation. J. Food Measur. Characterization, 1-17. https://doi.org/10.1007/s11694....
 
43.
Hirano M., Ohta A., and Abe K., 1998. Magnetic field effects on photosynthesis and growth of the cyanobacterium Spirulina platensis. J. Ferment. Bioeng., 86, 313-316. https://doi.org/10.1016/S0922-....
 
44.
Hu X., Liu R., Li Y., Wang W., Tai F., Xue R., and Li C., 2010. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul., 60, 225-235. https://doi.org/10.1007/s10725....
 
45.
Hu X., Wang W., Li C., Zhang J., Lin M., Zhang A., and Jiang M., 2008. Cross-talks between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. Plant Growth Regul., 55, 183-198. https://doi.org/10.1007/s10725....
 
46.
Hussein H.F., Hail R.C.A., and Jabail W.A., 2012. Effect of magnetic field on seed germination of wheat. Walailak J. Sci. Technol., 9, 341-345. https://doi.org/10.2004/wjst.v....
 
47.
Ihuoma S.O. and Madramootoo C.A., 2017. Recent advances in crop water stress detection. Comput. Electron. Agric., 141, 267-75. https://doi.org/10.1016/j.comp....
 
48.
Ito M., Oh J.S., Ohta T., Shiratani M., and Hori M., 2018. Current status and future prospects of agricultural applications using atmospheric‐pressure plasma technologies. Plasma Process Polym., 15, 1700073. https://doi.org/10.1002/ppap.2....
 
49.
Kang W.H., Kim J., Yoon H.I., and Son J.E., 2020. Quantification of spectral perception of plants with light absorption of photoreceptors. Plants, 9, 556. https://doi.org/10.3390/plants....
 
50.
Karimi S., Eshghi S., Karimi S., and Hasan-Nezhadian S., 2017. Inducing salt tolerance in sweet corn by magnetic priming. Acta Agric. Slov., 109, 89-102. https://doi.org/10.14720/aas.2....
 
51.
Karimi S., Hojati S., Eshghi S., Moghaddam R.N., and Jandoust S., 2012. Magnetic exposure improves tolerance of fig ‘Sabz’ explants to drought stress induced in vitro. Sci. Hortic., 137, 95-99. https://doi.org/10.1016/j.scie....
 
52.
Kornarzyński K., Dziwulska-Hunek A., Kornarzyńska-Gregorowicz A., and Sujak A., 2018. Effect of electromagnetic stimulation of amaranth seeds of different initial moisture on the germination parameters and photosynthetic pigments content. Sci. Rep., 8, 1-12. https://doi.org/10.1038/s41598....
 
53.
Leelapriya T., Dhilip K.S., and Narayan P.V.S., 2003. Effect of weak sinusoidal magnetic field on germination and yield of cotton (Gossypium spp.). Electromagn. Biol. Med., 22, 117-125. https://doi.org/10.1081/JBC-12....
 
54.
Lu S., Wang Z., Niu Y., Guo Z., and Huang B., 2008. Antioxidant responses of radiation-induced dwarf mutants of bermudagrass to drought stress. J. Am. Soc. Hortic. Sci., 133, 360-66. https://doi.org/10.21273/jashs....
 
55.
Mardero S., Schmook B., López-Martínez J.O., Cicero L., Radel C., and Christman Z., 2018. The uneven influence of climate trends and agricultural policies on maize production in the Yucatan Peninsula, Mexico. Land. 7, 1-20. https://doi.org/10.3390/land70....
 
56.
Mariz-Ponte N., Mendes R.J., Sario S., Ferreira de Oliveira J.M.P., Melo P., and Santos C., 2018. Tomato plants use non-enzymatic antioxidant pathways to cope with moderate UV-A/B Irradiation: A Contribution to the Use of UV-A/B in Horticulture. J. Plant Physiol., 221, 32-42. https://doi.org/10.1016/j.jplp....
 
57.
Martínez-Hernández G.B., Blanco V., Blaya-Ros P.J., Torres-Sánchez R., Domingo R., and Artés-Hernández F., 2020. Effects of Uv–C on bioactive compounds and quality changes during shelf life of sweet cherry grown under conventional or regulated deficit irrigation. Sci. Hortic., 269, 109398. https://doi.org/10.1016/j.scie....
 
58.
Martínez-Sánchez A., Guirao-Martínez J., Antonio Martínez J., Lozano-Pastor P., and Aguayo E., 2019. Inducing Fungal Resistance of Spinach Treated with Preharvest Hormetic Doses of UV-C. LWT 113:108302. https://doi.org/10.1016/j.lwt.....
 
59.
McKeon T.A. and Stumpf P.K., 1982. Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesterase from maturing seeds of safflower. J. Biol. Chem., 257, 12141-12147. https://doi.org/10.1016/s0021-....
 
60.
Metwally S.A., Abou-Ellail M., Abo-Leila B.H., and Aboud K.A., 2013. Effect of laser radiation on the growth, anatomical and biochemical genetic markers of Celosia argentea plants. Int. J. Acad. Res., 5, 200-206. https://doi.org/10.7813/2075-4....
 
61.
Mirajkar S.J., Dalvi S.G., Ramteke S.D., and Suprasanna P., 2019. Foliar application of gamma radiation processed chitosan triggered distinctive biological responses in sugarcane under water deficit stress conditions. Int. J. Biol. Macromol., 139, 1212-23. https://doi.org/10.1016/j.ijbi....
 
62.
Mishra A.K., Choi S.J., and Baek K.H., 2020. Application of Ultraviolet C irradiation for the increased production of secondary metabolites in plants. J. Anim. Plant Sci., 30, 1082-91. https://doi.org/10.36899/JAPS.....
 
63.
Mohammadi R. and Roshandel R., 2020. Ameliorative Effects of a Static Magnetic Field on Hyssop (Hyssopus officinalis L.) growth and phytochemical traits under water stress. Bioelectromagnetics, 41, 403-412. https://doi.org/10.1002/bem.22....
 
64.
Molina R., López-Santos C., Gómez-Ramírez A., Vílchez A., Espinós J.P., and González-Elipe A.R., 2018. Influence of irrigation conditions in the germination of plasma treated nasturtium seeds. Sci. Rep., 8, 1-11. https://doi.org/10.1038/s41598....
 
65.
Murphy J.D., 1942. The influence of magnetic field on seed germination. Am. J. Bot., 29, 155.
 
66.
Murray-Tortarolo G.N., Jaramillo V.J., and Larsen J., 2018. Food security and climate change: The Case of Rainfed Maize Production in Mexico. Agric. Meteorol., 253-254, 124-31. https://doi.org/10.1016/j.agrf....
 
67.
Nawaz F., Ahmad R., Ashraf M.Y., Waraich E.A., and Khan S.Z., 2015. Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol Environ. Saf., 113, 191-200. https://doi.org/10.1016/j.ecoe....
 
68.
Nejat N. and Mantri N., 2017. Plant immune system: Crosstalk between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence. Curr. Issues Mol. Biol., 23, 1-16. https://doi.org/10.21775/cimb.....
 
69.
Paik I. and Huq E., 2019. Plant photoreceptors: multi-functional sensory proteins and their signaling networks. Semin Cell Dev. Biol., 92, 114-21. https://doi.org/10.1016/j.semc....
 
70.
Paparella S., Araújo S.S., Rossi G., Wijayasinghe M., Carbonera D., and Balestrazzi A., 2015. Seed priming: state of the art and new perspectives. Plant Cell Reports, 34, 1281-1293. https://doi.org/10.1007/s00299....
 
71.
Park Y., Oh K.S., Oh J., Seok D.C., Kim S.B., Yoo S.J., and Lee M.J., 2016. The biological effects of surface dielectric barrier discharge on seed germination and plant growth with barley. Plasma Process Polym., 15, 1-8. https://doi.org/10.1002/ppap.2....
 
72.
Pérez-Gálvez A., Viera I., and Roca M., 2020. Carotenoids and chlorophylls as antioxidants. Antioxidants, 9, 1-39. https://doi.org/10.3390/antiox....
 
73.
Petridis A., Therios I., Samouris G., Koundouras S., and Giannakoula A., 2012. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olives (Olea europaea L.) cultivars. Plant Physiol. Biochem., 60, 1-11. https://doi.org/10.1016/j.plap....
 
74.
Plancot B., Gügi B., Mollet J.C., Loutelier-Bourhis C., Govind S.R., Lerouge P., Follet-Gueye M.L., Vicré M., Alfonso C., Nguema-Ona E., Bardor M., and Driouich A., 2019. Desiccation Tolerance in plants: structural characterization of the cell wall hemicellulosic polysaccharides in three Selaginella species. Carbohydr. Polym., 208, 180-90. https://doi.org/10.1016/j.carb....
 
75.
Qiu Z., He Y., Zhang Y., Guo J., and Wang L., 2018. Characterization of MiRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress. Ecotoxicol Environ. Saf., 164, 611-17. https://doi.org/10.1016/j.ecoe....
 
76.
Qiu Z., Yuan M., He Y., Li Y., and Zhang L., 2017. Physiological and transcriptome analysis of he-ne laser pretreated wheat seedlings in response to drought stress. Sci. Rep., 7, 11-13. https://doi.org/10.1038/s41598....
 
77.
Qiu Z.B., Liu X., Tian X.J., and Yue M., 2008. Effects of CO2 laser pretreatment on drought stress resistance in wheat. J. Photochem. Photobiol., B 90, 17-25. https://doi.org/10.1016/j.jpho....
 
78.
Radhakrishnan R., 2019. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiol. Mol. Biol. Plants, 25, 1107-19. https://doi.org/10.1007/s12298....
 
79.
Rajabbeigi E., Eichholz I., Beesk N., Ulrichs C., Kroh L.W., Rohn S., and Huyskens-Keil S., 2013. Interaction of drought stress and uv-b radiation - impact on biomass production and flavonoid metabolism in lettuce (Lactuca sativa L.). J. Appl. Bot. Food Qual., 86, 190-97. https://doi.org/10.5073/JABFQ.....
 
80.
Rifna E.J., Ramanan K.R., and Mahendran R., 2019. Emerging Technology applications for improving seed germination. Trends Food Sci. Technol., 86, 95-108. https://doi.org/10.1016/j.tifs....
 
81.
Robson T.M., Hartikainen S.M., and Aphalo P.J., 2015. How does solar ultraviolet-b radiation improve drought tolerance of silver birch (Betula pendula Roth.) Seedlings?. Plant Cell Environ., 38, 953-67. https://doi.org/10.1111/pce.12....
 
82.
Rodríguez-Calzada T., Qian M., Strid Å., Neugart S., Schreiner M., Torres-Pacheco I., and Guevara-González R.G., 2019. Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiol. Biochem., 134, 94-102. https://doi.org/10.1016/j.plap....
 
83.
Saccon P., 2018. Water for agriculture, irrigation management. Appl. Soil Ecol., 123, 793-96. https://doi.org/10.1016/j.apso....
 
84.
Sangtarash M.H., Qaderi M.M., Chinnappa C.C., and Reid D.M., 2009. Differential sensitivity of canola (Brassica Napus) seedlings to Ultraviolet-B radiation, water stress and abscisic acid. Environ. Exp. Bot., 66, 212-19. https://doi.org/10.1016/j.enve....
 
85.
Savostin P.V., 1964. Magnetic growth relations in plants. Planta 12, 327.
 
86.
Seghatoleslami M., Feizi H., Mousav G., and Berahmand A., 2015. Effect of magnetic field and silver nanoparticles on yield and water use efficiency of Carum copticum under water stress conditions. Pol. J. Chem. Technol., 17, 110-14. https://doi.org/10.1515/pjct-2....
 
87.
Selim A.F.H. and El-Nady M.F., 2011. Physio-anatomical responses of drought stressed tomato plants to magnetic field. Acta Astronautica, 69, 387-96. https://doi.org/10.1016/j.acta....
 
88.
Šerá B., Spatenka P., S̆erý M., Vrchotova N., and Hruskova I., 2010. Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans. Plasma Sci., 38, 2963-68. https://doi.org/10.1109/TPS.20....
 
89.
Shao H.B., Chu L.Y., Jaleel C.A., Manivannan P., Panneerselvam R., and Shao M.A., 2009a. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J. Plant Physiol., 167, 1248-52. https://doi.org/10.1016/j.jplp....
 
90.
Shao H.B., Chu L.Y., Jaleel C.A., Manivannan P., Panneerselvam R., and Shao M.A., 2009b. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit. Rev. Biotechnol., 29, 131-51. https://doi.org/10.1080/073885....
 
91.
Sharp R.E., Poroyko V., Hejlek L.G., Spollen W.G., Springer G.K., Bohnert H.J., and Nguyen H.T., 2004. Root growth maintenance during water deficits: Physiology to functional genomics. J. Exp. Bot., 55, 2343-2351. https://doi.org/10.1093/jxb/er....
 
92.
Smith I.K., Vierheller T.L., and Thorne C.A., 1989. Properties and functions of glutathione reductase in plants. Physiol. Plant, 77, 449-456. https://doi.org/10.1111/j.1399....
 
93.
Soares C., Carvalho M.E.A., Azevedo R.A., and Fidalgo F., 2019. Plants facing oxidative challenges – A little help from the antioxidant networks. Environ. Exp. Bot., 161, 4-25. https://doi.org/10.1016/j.enve....
 
94.
Štroch M., Materová Z., Vrábl D., Karlický V., Šigut L., Nezval J., and Špunda V., 2015. Protective effect of UV-A radiation during acclimation of the photosynthetic apparatus to UV-B treatment. Plant Physiol. Biochem., 96, 90-96. https://doi.org/10.1016/j.plap....
 
95.
Surjadinata B.B., Jacobo-Velázquez D.A., and Cisneros-Zevallos L., 2017. UVA, UVB and UVC light enhances the biosynthesis of phenolic antioxidants in fresh-cut carrot through a synergistic effect with wounding. Molecules, 22, 1-13. https://doi.org/10.3390/molecu....
 
96.
Thanos C. and Georghiou K., 1988. Osmoconditioning enhances cucumber and tomato seed germinability under adverse light conditions. Isr. J. Plant Sci., 37, 1-10.
 
97.
Thomas D.T. and Puthur J.T., 2019. Amplification of abiotic stress tolerance potential in rice seedlings with a low dose of UV-B seed priming. Funct. Plant Biol., 46, 455-66. https://doi.org/10.1071/FP1825....
 
98.
Thomas D.T. and Puthur J.T., 2017. UV radiation priming: a means of amplifying the inherent potential for abiotic stress tolerance in crop plants. Environ. Exp. Botany, 138, 57-66. doi:10.1016/j. envexpbot.2017.03.003.
 
99.
Turtola S., Rousi M., Pusenius J., Yamaji K., Heiska S., Tirkkonen V., Meier B., and Julkunen-Tiitto R., 2006. Genotypic variation in drought response of willows grown under ambient and enhanced UV-B radiation. Environ. Exp. Bot., 56, 80-86. https://doi.org/10.1016/j.enve....
 
100.
Vàsquez H., Ouhibi C., Forges M., Lizzi Y., Urban L., and Aarrouf J., 2020. Hormetic doses of UV-C light decrease the susceptibility of tomato plants to Botrytis Cinerea infection. J. Phytopathol., 168, 524-32. https://doi.org/10.1111/jph.12....
 
101.
Velichko I., Gordeev I., Shelemin A., Nikitin D., Brinar J., Pleskunov P., Choukourov A., Pazderů K., and Pulkrábek J., 2019. Plasma jet and dielectric barrier discharge treatment of wheat seeds. Plasma Chem. Plasma Proc., 39, 913-28. https://doi.org/10.1007/s11090....
 
102.
Waqas M.O., Korres N.E., Khan M.D., Nizami A.S., Deeba F., Ali I., and Hussain H., 2019. Advances in the concept and methods of seed priming. In: Priming and pretreatment of seeds and seedlings. Springer, Singapore.
 
103.
Wang J., Zhang L., Cao Y., Qi C., Li S., Liu L., Wang G., Mao A., Ren S., and Guo Y.D., 2018. CsATAF1 positively regulates drought stress tolerance by an ABA-dependent pathway and by promoting ROS scavenging in cucumber. Plant Cell Physiol., 59, 930-45. https://doi.org/10.1093/pcp/pc....
 
104.
Wever R., 1968. Einfluß schwacher elektro-magnetischer Felder auf die circadiane Periodik des Menschen. Die Naturwis-senschaften, 55, 29-32. https://doi.org/10.1007/BF0059....
 
105.
Wilson B.F., 2000. Apical control of branch growth and angle in woody plants. Am. J. Bot., 87, 601-607. https://doi.org/10.2307/265684....
 
106.
Xu Y., Charles M.T., Luo Z., Mimee B., Tong Z., Véronneau P.Y., Roussel D., and Rolland D., 2019. Ultraviolet-C priming of strawberry leaves against subsequent Mycosphaerella Fragariae Infection involves the action of reactive oxygen species, plant hormones, and terpenes. Plant Cell Environ., 42, 815-31. https://doi.org/10.1111/pce.13....
 
107.
Yoon H.I., Zhang W., and Son J.E., 2020. Optimal duration of drought stress near harvest for promoting bioactive compounds and antioxidant capacity in kale with or without UV-B radiation in plant factories. Plant, 9, 295. https://doi.org/10.3390/plants....
 
108.
Zhang C., Chen M., Liu G., Huang G., Wang Y., Yang S., and Xu X., 2020. Enhanced UV-B radiation aggravates negative effects more in females than in males of morus alba saplings under drought stress. Environ. Exp. Bot., 169, 103903. http s://doi.org/10.1016/j.envexpbot.2019.103903.
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top