RESEARCH PAPER
Enhancing tomato (Solanum lycopersicum Mill.) plant growth and rhizosphere microbiome with carbon nanodots and mycorrhizal fungi: Impact on root colonization, plant growth, chlorophyll, and nitrogen content
			
	
 
More details
Hide details
	
	
									
				1
				Department of Plant Protection, University of Live Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland
				 
			 
						
				2
				Department of Biotechnology, SGB Amravati University, Amravati-444 602 Maharashtra, India
				 
			 
						
				3
				Department of Chemistry, Federal University of Piaui (UFPI), R. Cicero Duarte, 905-Junco, Picos-PI 64607-670, Brazil
				 
			 
						
				4
				Management, Biotechnology and Nature Conservation, University of Debrecen, Böszörményi űt 138, 4225 Debrecen, Hátszeg utca 6, Hungary
				 
			 
						
				5
				Department of Microbiology and Ryzosphere, National Institute of Horticultural Research, Pomologiczna 18, 96-100 Skierniewice, Poland
				 
			 
						
				6
				Department of Tourism and Recreation, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
				 
			 
						
				7
				Subdepartment of Ornamental Plants and Dendrology, Institute of Horticulture Production, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
				 
			 
										
				
				
		
		 
			
			
		
			
			 
			Final revision date: 2025-08-20
			 
		 		
		
		
			
			 
			Acceptance date: 2025-09-03
			 
		 		
		
		
			
			 
			Publication date: 2025-11-04
			 
		 			
		 
	
							
																									    		
    			 
    			
    				    					Corresponding author
    					    				    				
    					Barbara  Skwarylo   
    					Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069, Lublin, Poland
    				
 
    			
				 
    			 
    		 		
			
																											 
		
	 
		
 
 
Int. Agrophys. 2026, 40(1): 25-37
		
 
 
    HIGHLIGHTS
    
    	
    	    	- Carbon dots with mycorrhiza boosted root biomass, chlorophyll, and leaf nitrogen
 
    	    	- Highest root colonization was observed with Gly-CNDs combined with mycorrhiza
 
    	    	- Application of carbon nanodots and mycorrhiza boosted beneficial bacteria
 
    	    	- Best tomato growth and health came from combined mycorrhiza and Gly-CNDs use
 
    	    	
     
 
KEYWORDS
TOPICS
ABSTRACT
This study investigated the effects of glycine-based (Gly-CNDs) and curcumin-based (Cur-CNDs) carbon nanodots, in combination with mycorrhizal fungi (MF), on the growth and rhizosphere microbiome of tomato plants (Solanum lycopersicum Mill.). The experiment, conducted in 2024 in a controlled greenhouse environment, evaluated root colonization, plant height, stem thickness, chlorophyll content, nitrogen uptake, and microbial abundance in the rhizosphere. Mycorrhizal inoculation significantly enhanced root colonization, particularly when combined with nanodots, improving nutrient uptake and chlorophyll content. The application of Gly-CNDs and Cur-CNDs, both independently and synergistically with MF, positively influenced root biomass, chlorophyll a and b content, and nitrogen accumulation in leaves. Microbial profiling showed that treatments increased bacterial populations (notably Bacillus spp. and Pseudomonas spp.) while suppressing fungal abundance in the rhizosphere, indicating a shift in microbial community structure. Among all treatments, the combination of mycorrhizal fungi with Gly-CNDs (MF+NSG) proved most effective in promoting plant growth and health status. These findings highlight the potential of CNDs as sustainable biostimulants to enhance tomato production, improve soil microbiome dynamics, and reduce reliance on chemical fertilizers.
		
	
		
    
    FUNDING
    
    	This work was funded by the Minister of Science and Higher Education of Poland, Subsidy: SUBB.WOK.19/019.
     
    
    CONFLICT OF INTEREST
    
    	The authors do not declare any conflict of interest.
     
REFERENCES (78)
			
	1.
	
		Abdulkadir, M., Waliyu, S., 2012. Screening and isolation of the soil bacteria for ability to produce antibiotics. EJAS 4, 211-215.
		
	 
	 
 			
	2.
	
		Abinaya, K., Raja, K., Raja, K., Sathya Moorthy, P., Senthil, A., Chandrakumar, K., 2024. Impact of green carbon dot nanoparticles on seedling emergence, crop growth and seed yield in blackgram (Vigna mungo L. Hepper). Sci. Rep. 14, 23783. 
https://doi.org/10.1038/s41598....
 
		
	 
	 
 			
	3.
	
		Ahanger, M.A., Agarwal, R., Tomar, N.S., Shrivastava, M., 2015. Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L. cultivar Kent). J. Plant Interact. 10, 211-223. 
https://doi.org/10.1080/174291....
 
		
	 
	 
 			
	4.
	
		Anas, M., Falak, A., Khan, A., Khattak, W.A., Nisa, S.G., Aslam, Q., et al., 2024. Therapeutic potential and agricultural benefits of curcumin: A comprehensive review of health and sustainability applications. J. Umm Al-Qura Univ. Appl. Sci. 45(1): e2024002007. 
https://doi.org/10.1007/s43994....
 
		
	 
	 
 			
			
	6.
	
		Bai, Y.-C., Chang, Y.-Y., Hussain, M., Lu, B., Zhang, J.-P., Song, X.-B., Lei, X.-S., Pei, D., 2020. Soil chemical and microbiological properties are changed by long-term chemical fertilizers that limit ecosystem functioning. Microorganisms 8, 694. 
https://doi.org/10.3390/microo....
 
		
	 
	 
 			
	7.
	
		Bhardwaj, D., Sharma, P., Verma, S.K., 2021. Application of nanotechnology for enhancing nutrient use efficiency and crop productivity. Environ. Chem. Lett. 19(3), 2731-2755. 
https://doi.org/10.1007/s10311....
 
		
	 
	 
 			
	8.
	
		Bücking, H., Abubaker, J., Govindarajulu, M., Tala, M., Pfeffer, P.E., Nagahashi, G., et al., 2008. Root exudates stimulate the uptake and metabolism of organic carbon in germinating spores of Glomus intraradices. New Phytol. 180, 684-695. 
https://doi.org/10.1111/j.1469....
 
		
	 
	 
 			
	9.
	
		Bücking, H., Kafle, A., 2015. Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: Current knowledge and research gaps. Agronomy 5(4), 587-612. 
https://doi.org/10.3390/agrono....
 
		
	 
	 
 			
	10.
	
		Cai, D., Zhong, X., Xu, L., Xiong, Y., Deng, W., Zou, G., et al., 2025. Biomass-derived carbon dots: Synthesis, modification and application in batteries. Chemical Science 16(12), 4937. 
https://doi.org/10.1039/d4sc08....
 
		
	 
	 
 			
	11.
	
		Chen, D., Wang, X., Li, Y., Zhang, Q., Liu, H., Zhao, L., et al., 2021. Impacts of long-term fertilization on the activity and structure of soil microbial communities in different soil types. Appl. Soil Ecol. 158, 103790. 
https://doi.org/10.1016/j.apso....
 
		
	 
	 
 			
	12.
	
		Chen, L., Zhu, L., Cheng, H., Xu, W., Li, G., Zhang, Y., et al., 2024. Negatively charged carbon dots employed symplastic and apoplastic pathways to enable better plant delivery than positively charged carbon dots. ACS Nano 18(34), 23154-23167. 
https://doi.org/10.1021/acsnan....
 
		
	 
	 
 			
	13.
	
		Chen, N., Tian, X., Yang, M., Xu, J., Tan, T., Wang, J., 2024. Effect of carbon nanoparticles on the growth and photosynthetic property of Ficus tikoua. Bur. Plant. PeerJ. 12, e17652. 
https://doi.org/10.7717/peerj.....
 
		
	 
	 
 			
	14.
	
		Chen, N., Wang, Y., Li, X., Zhang, H., Liu, Y., Zhao, J., et al., 2023. Carbon nanoparticles enhance soil microbial activity and improve plant performance under stress conditions. PeerJ, 11, e14789. 
https://doi.org/10.7717/peerj.....
 
		
	 
	 
 			
	15.
	
		Cirillo, V., Romano, I., Woo, S.L., Di Stasio, E., Lombardi, N., Comite, E., et al., 2023. Inoculation with a microbial consortium increases soil microbial diversity and improves agronomic traits of tomato under water and nitrogen deficiency. Front. Plant Sci. 14, 1304627. 
https://doi.org/10.3389/fpls.2....
 
		
	 
	 
 			
	16.
	
		Derkowska, E., Sas Paszt, L., Dyki, B., Sumorok, B., 2015. Assessment of mycorrhizal frequency in the roots of fruit plants using different dyes. Advances in Microbiol. 5, 54-64, 
http://dx.doi.org/10.4236/aim.....
 
		
	 
	 
 			
	17.
	
		Ge, Y., Schimel, J.P., Holden, P.A., 2011. Evidence for negative effects of TiO₂ and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 45(4), 1659-1664. 
https://doi.org/10.1021/es1030....
 
		
	 
	 
 			
	18.
	
		Guo, B., Liu, G., Li, W., Hu, C., Lei, B., Zhuang, J., et al., 2022. The role of carbon dots in the life cycle of crops. Ind. Crop. Prod. 187, 115427. 
https://doi.org/10.1016/j.indc....
 
		
	 
	 
 			
	19.
	
		Haris, I.A., 2017. Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. Int. J. Life Sci. Sci. Res. 3(3), 1020-1030.
		
	 
	 
 			
	20.
	
		Hui, K., Xi, B., Tan, W., Song, Q., 2022. Long-term application of nitrogen fertilizer alters the properties of dissolved soil organic matter and increases the accumulation of polycyclic aromatic hydrocarbons. Environ. Res. 215(2), 114267. 
https://doi.org/10.1016/j.envr....
 
		
	 
	 
 			
	21.
	
		Jamiołkowska, A., Księżniak, A., Hetman, B., Kopacki, M., Skwaryło-Bednarz, B., Gałązka, A., et al., 2017. Interactions of arbuscular mycorrhizal fungi with plants and soil microflora. Acta Sci. Pol., Hortorum Cultus 16, 89-95.
		
	 
	 
 			
	22.
	
		Jamiołkowska, A., Skwaryło-Bednarz, B., Patkowska, E., Buczkowska, H., Gałązka, A., Grządziel, J., et al., 2020a. Effect of mycorrhizal inoculation and irrigation on biological properties of sweet pepper rhizosphere in organic field cultivation. Agronomy 10(11), 1693. 
https://doi.org/10.3390/agrono....
 
		
	 
	 
 			
	23.
	
		Jamiołkowska, A., Skwaryło-Bednarz, B., Thanoon, A.H., Kursa, W., 2021a. Contribution of mycorrhizae to sustainable and ecological agriculture: A review. Int. Agrophys. 35(4), 331-341. 
https://doi.org/10.31545/intag....
 
		
	 
	 
 			
	24.
	
		Jamiołkowska, A., Thanoon, A.H., Skwaryło-Bednarz, B., Patkowska, E., Mielniczuk, E., 2020b. Mycorrhizal inoculation as an alternative for the ecological production of tomato (Lycopersicon esculentum Mill.). Int. Agroph. 34(2), 253-264. 
https://doi.org/10.31545/intag....
 
		
	 
	 
 			
	25.
	
		Joudeh, N., Linke, D., 2022. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol. 20, 262. 
https://doi.org/10.1186/s12951....
 
		
	 
	 
 			
	26.
	
		Khanna, K., Kohli, S. K., Handa, N., Kaur, H., Ohri, P., Bhardwaj, R., et al., 2021. Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotox. Environ. Saf. 222, 112459. 
https://doi.org/10.1016/j.ecoe....
 
		
	 
	 
 			
	27.
	
		Kloepfer, J.A., Mielke, R.E., Nadeau, J.L., 2005. Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl. Environ. Microbiol. 71(5), 2548-2557. 
https://doi.org/10.1128/AEM.71....
 
		
	 
	 
 			
	28.
	
		Krid S., Rhouma A., Mogou I., Quesada J.M., Nesme X., Gargouri A., 2010. Pseudomonas savastanoi endophytic bacteria in olive tree knots and antagonistic potential of strains of Pseudomonas fluorescens and Bacillus subtilis. J. Plant Pathol. 92, 335-341.
		
	 
	 
 			
	29.
	
		Kumar, M.M., Singh, R., Tomer, A., 2014. In vitro evaluation of antagonistic activity of Pseudomonas fluorescens against fungal pathogen. JBiopest. 7, 43-46.
		
	 
	 
 			
	30.
	
		Kursa, W., Jamiołkowska, A., Skwaryło-Bednarz, B., Kowalska, G., Gałązka, A., 2024. Impact of selected plant extracts on winter wheat (Triticum aestivum L.) seedlings: Growth, plant health status and soil activity. Agriculture 14(6), 959. 
https://doi.org/10.3390/agricu....
 
		
	 
	 
 			
	31.
	
		Li, D., Li, T., Yang, X., Wang, H., Chu, J., Dong, H., et al., 2024. Carbon nanosol promotes plant growth and broad-spectrum resistance. Environ. Res. 251(1), 118635. 
https://doi.org/10.1016/j.envr....
 
		
	 
	 
 			
	32.
	
		Li, G., Xu, J., Xu, K., 2023. Physiological functions of carbon dots and their applications in agriculture: A review. Nanomater 13, 2684. 
https://doi.org/10.3390/nano13....
 
		
	 
	 
 			
	33.
	
		Li, Y., Fan, K., Shen, J., Wang, Y., Jeyaraj, A., Hu, S., et al., 2023. Glycine-induced phosphorylation plays a pivotal role in energy metabolism in roots and amino acid metabolism in leaves of tea plant. Foods 12(2), 334. 
https://doi.org/10.3390/foods1....
 
		
	 
	 
 			
	34.
	
		Li, H., Huang, J., Lu, F., Liu, Y., Song, Y., Sun, Y., et al., 2018. Impacts of carbon dots on rice plants: Boosting the growth and improving the disease resistance. ACS Appl. Bio Mater. 1, 663-672. 
https://doi.org/10.1021/acsabm....
 
		
	 
	 
 			
	35.
	
		Li, Y., Pan, X., Xu, X., Wu, Y., Zhuang, J., Zhang, X., et al., 2021. Carbon dots as light converter for plant photosynthesis: Augmenting light coverage and quantum yield effect. J. Hazard. Mater. 410, 124534. 
https://doi.org/10.1016/j.jhaz... 
		
	 
	 
 			
	36.
	
		Lv, J., Christie, P., Zhang, S., 2019. Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environ. Sci. Nano 6, 41-59. 
https://doi.org/10.1039/C8EN00....
 
		
	 
	 
 			
	37.
	
		Mącik, M., Gryta, A., Sas-Paszt, L., Frąc, M., 2020. The status of soil microbiome as affected by the application of phosphorus biofertilizer: Fertilizer enriched with beneficial bacterial strains. International J. Mol. Sci. 21, 8003. 
https://doi.org/10.3390/ijms21....
 
		
	 
	 
 			
	38.
	
		Manila, S., Nelson, R., 2014. Biochemical changes induced in tomato as a result of arbuscular mycorrhizal fungal colonization and tomato wilt pathogen infection. AJPSKY 4(1), 62-68.
		
	 
	 
 			
	39.
	
		Martin, F.M., 2024. The mycorrhizal symbiosis: Research frontiers in genomics, ecology, and agricultural application. New Phytologist. 242(4), 1486-1506. 
https://doi.org/10.1111/nph.19....
 
		
	 
	 
 			
	40.
	
		Mekkaoui, F., Ait-El-Mokhtar, M., Zaari Jabri, N., Amghar, I., Essadssi, S., Hmyene, A., 2024. The use of compost and arbuscular mycorrhizal fungi and their combination to improve tomato tolerance to salt stress. Plants 13, 2225. 
https://doi.org/10.3390/plants....
 
		
	 
	 
 			
	41.
	
		Ouyang, S.Q., Ji, H.M., Feng, T., Luo, S.J., Cheng, L., Wang, N., 2023. Artificial trans-kingdom RNAi of FolRDR1 is a potential strategy to control tomato wilt disease. PLOS Pathog. 19(6), e1011463. 
https://doi.org/10.1371/journa....
 
		
	 
	 
 			
	42.
	
		Patkowska, E., Konopiński, M., 2014. Antagonistic bacteria in the soil after cover crops cultivation. Plant Soil Environ. 60(2), 69-73. 
https://doi.org/10.17221/774/2....
 
		
	 
	 
 			
	43.
	
		Patkowska, E., Krawiec, P., 2016. Yielding and healthiness of pea cv. “Sześciotygodniowy tor” after applying biotechnical preparations. Acta Sci Pol., Hortorum Cultus 15(2), 143-156.
		
	 
	 
 			
	44.
	
		Pelletier, D.A., Suresh, A.K., Holton, G.A., McKeown, C.K., Wang, W., Gu, B., et al., 2010. Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl. Environ. Microbiol. 76(24), 7981-7989. 
https://doi.org/10.1128/AEM.01....
 
		
	 
	 
 			
	45.
	
		Perez-de-Luque, A., 2017. Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Front. Environ. Sci. 5, 12. 
https://doi.org/10.3389/fenvs.....
 
		
	 
	 
 			
	46.
	
		Prokisch, J., Nguyen, D.H.H., Muthu, A., Ferroudj, A., Singh, A., Agrawal, S., et al., 2024. Carbon nanodot-microbe-plant nexus in agroecosystem and antimicrobial applications. Nanomater. 14, 1249. 
https://doi.org/10.3390/nano14....
 
		
	 
	 
 			
	47.
	
		Qi, P., Huang, M., Hu, X., Zhang, Y., Wang, Y., Li, P., et al., 2022. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling. Plant Cell 34(5), 1666-1683. 
https://doi.org/10.1093/plcell....
 
		
	 
	 
 			
	48.
	
		Qureshi, Z.A., Dabash, H., Ponnamma, D., Abbas, M., 2024. Carbon dots as versatile nanomaterials in sensing and imaging: Efficiency and beyond. Heliyon 10(11), e31634. 
https://doi.org/10.1016/j.heli....
 
		
	 
	 
 			
	49.
	
		Rajput, V.D., Minkina, T., Fedorenko, A., Shende, S., Sushkova, S., Mandzhieva, S., et al., 2018. Effects of nanoparticles on crops: Trends, aspects, and future perspectives. Plants 7(4), 90. 
https://doi.org/10.3390/plants....
 
		
	 
	 
 			
	50.
	
		Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H.M., He, X., Mbarki, S., et al., 2019. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front. Chem. 7, 767. 
https://doi.org/10.3389/fchem.....
 
		
	 
	 
 			
	51.
	
		Rengel, Z., 2011. Soil pH, soil health and climate change. In: Singh, B.S., Cowie, A.L., Chan, K.Y., (Eds) Soil Health and Climate Change, Soil Biology, Springer, Australia, 69-85. 
https://doi.org/10.1007/978-3-....
 
		
	 
	 
 			
	52.
	
		Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agr. Food Chem. 59(8), 3485-3498. 
https://doi.org/10.1021/jf1045....
 
		
	 
	 
 			
	53.
	
		Rimal, V., Shishodia, S., Srivastava, P.K., 2020. Novel synthesis of high-thermal stability carbon dots and nanocomposites from oleic acid as an organic substrate. Appl Nanosci. 10, 455-464, 
https://doi.org/10.1007/s13204....
 
		
	 
	 
 			
	54.
	
		Sas-Paszt, L., Sumorok, B., Grzyb, Z.S., Głuszek, S., Sitarek, M., Lisek, A., et al., 2020. Effect of microbiologically enriched fertilizers on the yielding of strawberry plants under field conditions in the second year of plantation. J. Res. Appl. Agric. Eng. 65(1), 31-38.
		
	 
	 
 			
	55.
	
		Sas-Paszt, L., Sumorok, B., Malusa, E., Głuszek, S., Derkowska, E., 2011. The influence of bioproducts on root growth and mycorrhizal occurrence in the rhizosphere of strawberry plants ‘Elsanta’. J. Fruit Ornam. Plant Res. 19(1), 13-33.
		
	 
	 
 			
	56.
	
		Satya, Hashmi, K., Gupta, S., Mishra, P., Khan, T., Joshi, S., 2024. The vital role of nanoparticles in enhancing plant growth and development. Eng. Proc. 67, 48. 
https://doi.org/10.3390/engpro....
 
		
	 
	 
 			
	57.
	
		Shoala, T., 2020. Carbon nanostructures: Detection, controlling plant diseases and mycotoxins. Carbon Nanomaterials for Agri-Food and Environmental Applications 261-277. 
https://doi.org/10.1016/B978-0....
 
		
	 
	 
 			
	58.
	
		Tripathi, D.K., Singh, V.P., Singh, S., Srivastava, G., Singh, S., Sharma, N.C., et al., 2017. Nitric oxide alleviates arsenic toxicity by modulating physio-biochemical responses in Solanum lycopersicum L.. Front. Plant Sci. 8, 870. 
https://doi.org/10.3389/fpls.2....
 
		
	 
	 
 			
	59.
	
		Tripathi, S., Srivastava, P., Devi, R.S., Bhadouria, R., 2020. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In: Majeti, N.V.P. (Ed.), Agrochemicals Detection, Treatment and Remediation, Chapter 2, Butterworth-Heinemann, 25-54. 
https://doi.org/10.1016/B978-0....
 
		
	 
	 
 			
	60.
	
		Turan, M., Ekinci, M., Argin, S., Brinza, M., Yildirim, E., 2023. Drought stress amelioration in tomato (Solanum lycopersicum L.) seedlings by biostimulant as regenerative agent. Front. Plant Sci. 14, 1211210. 
https://doi.org/10.3389/fpls.2....
 
		
	 
	 
 			
	61.
	
		Vázquez, M.M., César, S., Azcón, R., Barea, J. M., 2000. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol. 15, 261-272.
		
	 
	 
 			
	62.
	
		Verma, V., Joshi, K., Mazumdar, B., 2012. Study of siderophore formation in nodule-forming bacterial species. Res. J. Chem. Sci. 2, 26-29.
		
	 
	 
 			
	63.
	
		Vitousek, P.M., Naylor, R., Crews, T., David, M.B., Drinkwater, L.E., et al., 2009. Nutrient imbalances in agricultural development. Sci. 324(5934), 1519-1520. 
https://doi.org/10.1126/scienc....
 
		
	 
	 
 			
	64.
	
		Wang, F., Adams, C.A., Yang, W., Sun, Y., Shi, Z., 2020. Benefits of arbuscular mycorrhizal fungi in reducing organic contaminant residues in crops: Implications for cleaner agricultural production. Crit. Rev. Environ. Sci. Technol. 50(15), 1580-1612. 
https://doi.org/10.1080/106433....
 
		
	 
	 
 			
	65.
	
		Wang, J., Shen, Y., Chen, Y., Gao, S., Xue, W., Chen, X., et al., 2025. Arbuscular mycorrhizal fungi regulate the diversity-invasion resistance relationship by influencing the role of complementarity and selection effects. The New Phytol. 246(1), 317-330. 
https://doi.org/10.1111/nph.20....
 
		
	 
	 
 			
	66.
	
		Wang, X., Xie, H., Wang, P., Yin, H., 2023. Nanoparticles in plants: Uptake, transport and physiological activity in leaf and root. Materials 16(8), 3097. 
https://doi.org/10.3390/ma1608....
 
		
	 
	 
 			
			
	68.
	
		Wu, T., Li, M., Li, T., Zhao, Y., Yuan, J., Zhao, Y., et al., 2023. Natural biomass-derived carbon dots as a potent solubilizer with high biocompatibility and enhanced antioxidant activity. Front. Mol. Biosci. 10, 1284599. 
https://doi.org/10.3389/fmolb.....
 
		
	 
	 
 			
			
	70.
	
		Xu, J., Ma, W., Han, H., Wang, L., Chen, Y., 2022. Nitrogen metabolism in crops under different environmental stress conditions. Front. Plant Sci. 13, 854197. 
https://doi.org/10.3389/fpls.2....
 
		
	 
	 
 			
	71.
	
		Xu, N., Chen, B., Wang, Y., Lei, C., Zhang, Z., Ye, Y., et al., 2024. Integrating anthropogenic-pesticide interactions into a soil health-microbial index for sustainable agriculture at global scale. Glob. Change Biol. 30(11), e17596. 
https://doi.org/10.1111/gcb.17....
 
		
	 
	 
 			
	72.
	
		Yan, X., Wang, J., Li, D., Feng, J., Xu, Q., Chen, H., et al., 2021. Response of primary root to nitrogen-doped carbon dots in Arabidopsis thaliana: Alterations in auxin level and cell division activity. Environ. Sci. Nano 8, 1352-1363. 
https://doi.org/10.1039/D1EN00....
 
		
	 
	 
 			
	73.
	
		Yahaya Pudza, M., Zainal Abidin, Z., Abdul Rashid, S., Md Yasin, F., Noor, A.S., Issa, M.A. 2020. Eco-friendly sustainable fluorescent carbon dots for the adsorption of heavy metal ions in aqueous environment. Nanomaterials, 10(2), 315. 
https://doi.org/10.3390/nano10....
 
		
	 
	 
 			
	74.
	
		Yu, Z., Xu, X., Guo, L., Jin, R., Lu, Y., 2024. Uptake and transport of micro/nanoplastics in terrestrial plants: Detection, mechanisms, and influencing factors. Sci. Total Environ. 907, 168155. 
https://doi.org/10.1016/j.scit....
 
		
	 
	 
 			
	75.
	
		Zadehbagheri, M., Azarpanah, A., Javanmardi, S., 2014. Perspective of arbuscular mycorrhizal fungi phytoremediation on contamination and remediation heavy metals soil in sustainable agriculture. AEJAES 14(4), 379-386. 
https://doi.org/10.5829/idosi.
 
		
	 
	 
 			
	76.
	
		Zhang, R., Li, Y., Zhao, X., Degen, A., Lian, J., Liu, X., et al., 2022. Fertilizers have a greater impact on the soil bacterial community than on the fungal community in a sandy farmland ecosystem, Inner Mongolia. Ecol. Indic. 140, 108972. 
https://doi.org/10.1016/j.ecol....
 
		
	 
	 
 			
	77.
	
		Zhao, L., Sun, Y., Hernández-Viezcas, J.A., Hong, J., Majumdar, S., Niu, G., et al., 2021. Monitoring the structural and functional changes of soil microbial communities induced by metal-based nanoparticles using metagenomics. J. Hazard. Mater. 403, 123657. 
https://doi.org/10.1016/j.jhaz....
 
		
	 
	 
 			
	78.
	
		Zhao, Y., Zhang, H., Li, J., Liu, Q., Hu, J., 2020. The role of nitrogen in photosynthesis and chlorophyll metabolism. Acta Physiol. Plant. 42, 120. 
https://doi.org/10.1007/s11738....