Image-based modelling of the effect of s-metolachlor plus atrazine on the soaking kinetics of maize seeds
More details
Hide details
Plant Protection Master Programme, Federal Goiano Institute, Geraldo Silva Nascimento Road Km 2.5, 75790-000, Urutai-GO, Brazil
Statistics and Geoprocessing Laboratory, Federal Goiano Institute, Geraldo Silva Nascimento Road Km 2.5, 75790-000, Urutai-GO, Brazil
Anderson Rodrigo da Silva   

Statistics and Geoprocessing Laboratory, Instituto Federal Goiano, Rod. Geraldo Silva Nascimento, km 2.5, 75790-000, Urutai, Brazil
Final revision date: 2022-04-22
Acceptance date: 2022-05-23
Publication date: 2022-06-29
Int. Agrophys. 2022, 36(3): 155–161
  • S-metolachlor + atrazine affects the imbibition and primary root of maize seeds.
  • Image-based imbibition curves are efficiently obtained and reveal the herbicide effects.
  • The absorption rate is severely reduced and germination can be fully inhibited.
  • Early preplant or preplant incorporated applications should be avoided.
Pre-emergent herbicides can have negative effects on maize seeds. The objective of this study was to model seed soaking curves through the processing of red-green-blue imagery of maize seeds under the influence of concentrations of s-metolachlor + atrazine on both the soaking kinetics and primary root emission. Seeds were placed to soak for 114 h in Petri dishes containing aqueous solutions of a herbicide containing s-metolachlor (290 g l–1) + atrazine (370 g l–1) with the following concentrations: 0% (water only), 2, 5, 10, 20 and 50%, based on the recommended dose (4.0 l of the commercial product per hectare). The images were systematically taken from a flatbed scanner with artificial light control. The red excess index was adapted to improve image segmentation. From the binary masks applied, the soaking curves for each herbicide concentration were obtained using estimates of seed intumescence over time. The soaking curves were described by fitting Peleg’s model. The herbicide concentration has significant effects on both the absorption rate and primary root emission; the absorption rate was reduced by 50%. A concentration of s-metolachlor (290 g l–1) + atrazine (370 g l–1) in aqueous solution that is above 20% can fully inhibit seed germination.
This work was supported by CNPq – National Council for Scientific and Technological Development (grant number: 309733/2021-9 (2022-2025)) and Federal Goiano Institute (process number: 23219.000752.2022-34 (2019 -2022))
The authors declare no competing financial interests or personal relationships that could have appeared to influence the content of this article.
Abenavoli M.R., Lupini A., Oliva S., and Sorgona A., 2010. Allelochemical effects on net nitrate uptake and plasma membrane H+-ATPase activity in maize seedlings. Biol. Plant., 54, 149-153,
Barnes E.R., Knezevic S.Z., Lawrence N.C., Irmak S., Rodriguez O., and Jhala A.J., 2019. Preemergence herbicide delays the critical time of weed removal in popcorn. Weed Technol., 33, 785-793,
Bedmar F., Daniel P.E., Costa J.L. and Giménez D., 2011. Sorption of acetochlor, S-metolachlor, and atrazine in surface and subsurface soil horizons of Argentina. Environ. Toxicol. Chem., 30, 1990-1996,
Boelt B., Shrestha S., Salimi Z., Jørgensen J.R., Nicolaisen M., and Carstensen J.M., 2018). Multispectral imaging – a new tool in seed quality assessment? Seed Sci. Res., 28, 222-228,
Bolaji O.T., Awonorin S.O., Shittu T.A., and Sanni L.O., 2017. Changes induced by soaking period on the physical properties of maize in the production of Ogi. Cogent Food Agric., 3, 1323571,
Carles L., Joly M., Bonnemoy F., Leremboure M., Donnadieu F., Batisson I., and Besse-Hoggan P., 2018. Biodegradation and toxicity of a maize herbicide mixture: mesotrione, nicosulfuron and S-metolachlor. J. Hazard. Mater., 354, 42-53,
Chaer M.C. and Tótola M.R., 2007. Impact of organic residue management on soil quality indicators during replanting of eucalypt stands (in Portuguese). Rev. Bras. Cienc. Solo, 31, 1381-1396,
Cheng F. and Cheng Z., 2015. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy. Front. Plant Sci., 6, 1020,
Cottingham C.K. and Hatzios K.K., 1992. Basis of differential tolerance of two corn hybrids (Zea mays) to metolachlor. Weed Sci., 40, 359-363,
Dayan F.E. and Duke S.O., 2014. Natural compounds as next-generation herbicides. Plant Physiol., 166, 1090-1105,
Oliveira L.A. de, Honorio M.J. de, Grecco K.L., and Tornisielo V.L., 2019. Atrazine movement in corn cultivated soil using HYDRUS-2D: A comparison between real and simulated data. J. Environ. Manage., 248, 109311,
Galon L., Fernandes F.F., Andres A., Silva A.F., and Forte C.T., 2016. Selectivity and efficiency of herbicides in weed control on sweet sorghum. Pesqui. Agropecu. Bras., 46, 123-131,
Gomes M.P., Bicalho E.M., Smedbol E., Cruz F.V.D.S., Lucotte M., and Garcia Q.S., 2017. Glyphosate can decrease germination of glyphosate-resistant soybeans. J. Agric. Food Chem., 65, 2279-2286,
Halcro K., McNabb K., Lockinger A., Socquet-Juglard D., Bett K.E., and Noble S.D., 2020. The BELT and phenoSEED platforms: shape and colour phenotyping of seed samples. Plant Methods, 16, 49,
Hang S., Nassetta M., Cañas A.I., Rampoldi E.A., Fernández-Canigia M.V., and Díaz-Zorita M., 2007. Changes in the atrazine extractable residues in no-tilled Mollisols. Soil Till. Res., 96, 243-249,
Heck T., Cinelli R., Polito R.A., Ribas J.L., Bagnara F., Hahn A.M., and Nunes A.L., 2020. The role of residual herbicides in controlling nutsedge (in Portuguese). Braz. J.f Dev., 6, 65147-65163,
ISTA, 1985. International Seed Testing Association. Seed Sci. Technol., 13, 299-355.
Joly P., Bonnemoy F., Charvy J.C., Bohatier J., and Mallet C., 2013. Toxicity assessment of the maize herbicides S-metolachlor, benoxacor, mesotrione and nicosulfuron, and their corresponding commercial formulations, alone and in mixtures, using the Microtox test. Chemosphere, 93, 2444-2450,
Lerro C.C., Freeman L.E.B., Portengen L., Kang D., Lee K., Blair A., Lynch C.F., Bakke B., De Roos A.J., and Vermeulen R.C., 2017. A longitudinal study of atrazine and 2,4-D exposure and oxidative stress markers among Iowa corn farmers. Environ. Mol. Mutagen., 58, 30-38,
Lev J. and Blahovec J., 2017. Imbibition of wheat seeds: Application of image analysis. Int. Agrophys., 31, 475-481,
Lowry D.M., Greiner D., Fretheim M., Ubben M., and Dhanwada K.R., 2013. Mechanism of metolachlor action due to alterations in cell cycle progression. Cell Biol. Toxicol., 29, 283-291,
Meyer G.E., Hindman T.W., and Lakshmi K., 1999. Machine vision detection parameters for plant species identification: Proc. SPIE 3543, Precis. Agric. Biol. Qual.,
Miller N.D., Stelpflug S.C., Kaeppler S.M., and Spalding E.P., 2018. A machine vision platform for measuring imbibition of maize kernels: quantification of genetic effects and correlations with germination. Plant Methods, 14, 115,
Moore M.T. and Locke M.A., 2012. Phytotoxicity of Atrazine, S-Metolachlor, and Permethrin to Typha latifolia (Linneaus) Germination and Seedling Growth. Bull. Environ. Contam. Toxicol., 89, 292-295,
Mueller C.T., Boswell B.W., Mueller S.S., and Steckel L.E., 2014. Dissipation of Fomesafen, Saflufenacil, Sulfentrazone, and Flumioxazin from a Tennessee Soil under Field Conditions. Weed Sci., 62, 664-671,
Noblet A., Leymarie J., and Bailly C., 2017. Chilling temperature remodels phospholipidome of Zea mays seeds during imbibition. Sci. Rep., 7, 8886,
Otsu N., 1979. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern., 9, 62-66,
Panfili I., Bartucca M.L., Marrollo G., Povero G., and Del Buono D., 2019. Application of a plant biostimulant to improve maize (Zea mays) tolerance to metolachlor. J. Agric. Food Chem., 67, 12164-12171,
Pau G., Fuchs F., Sklyar O., Boutros M., and Huber W., 2010. EBImage – an R package for image processing with applications to cellular phenotypes. Bioinformatics, 26, 979-981,
Peleg M., 1988. An empirical-model for the description of the moisture sorption curves. J. Food Sci., 53, 1216-1217,
Pimentel G.V., Guimarães D.F., Moreira S.G., Ávila M.O.T., Martins I.A., and Bruzi A.T., 2019. Selectivity and effectiveness of herbicides in the grain sorghum crop. Planta Daninha, 37, e019187771,
Qi Y., Yan B., Fu G., Guan X., Du L., and Li J., 2017. Germination of seeds and seedling growth of Amaranthus retroflexus L. following sublethal exposure of parent plants to herbicides. Sci. Rep., 7, 157,
Reider G., Buchholtz K.P., and Kust C.A., 1970. Uptake of herbicides by soybean seed. Weed Sci., 18, 101-105,
Silva A.R. da, 2020. seedwater: models for drying and soaking kinetics of seeds (version 2.0). R [Software],
Silva A.R. da, Leão-Araújo É.F., Rezende B.R., dos Santos W.V., Santana H.A., Silva S.C., Fernandes N.A., Costa D.S., and de Mesquita J.C., 2018. Modelling the three phases of the soaking kinetics of seeds. Agron. J., 110, 164-170,
Song Y., Fiaz M., Kim D.W., Kim J., and Kwon C.H., 2019. Increasing forage yield and effective weed control of corn-soybean mixed forage for livestock through using by different herbicides. J. Anim. Sci. Technol., 61, 185-191,
Subedi M., Willenborg C.J., and Vandenberg A., 2017. Influence of harvest aid herbicides on seed germination, seedling vigor and milling quality traits of red lentil (Lens culinaris L.). Front. Plant Sci., 8, 311,
Tanabata T., Shibaya T., Hori K., Ebana K., and Yano M., 2012. SmartGrain: high‑through‑put phenotyping software for measuring seed shape through image analysis. Plant Physiol., 160, 1871-1880,
Yan X., Wang J., Liu S., and Zhang C., 2011. Purity identification of maize seed based on color characteristics. In: Computer and Computing Technologies in Agriculture IV (Eds D. Li, Y. Liu, and Y. Chen), 620-628. Springer,