RESEARCH PAPER
Development of a machine vision system for the determination of some of the physical properties of very irregular small biomaterials
 
More details
Hide details
1
Department of Biosystems Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, 9th km of Farah Abad Road, 4818168984, Iran
 
2
Department of Petroleum Engineering, College of Engineering, knowledge University, 44001 Erbil, Iraq
 
3
Department of Agricultural, Forest and Transport Machinery, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
 
4
Department of Biosystems Engineering, Gorgan Agricultural and Natural Resources University, Iran
 
5
Department of Civil Engineering, Cihan University-Erbil, Kurdistan Region, Erbil 44001, Iraq
 
 
Final revision date: 2022-01-01
 
 
Acceptance date: 2022-01-18
 
 
Publication date: 2022-02-18
 
 
Corresponding author
Mariusz Szymanek   

Department of Agricultural, Forest and Transport Machinery, University of Life Sciences in Lublin, Głęboka 28, 20-612, Lublin, Poland
 
 
Int. Agrophys. 2022, 36(1): 27-35
 
HIGHLIGHTS
  • Application of the image processing technique is presented for volume estimation of very irregular small biomaterials (wheat and rice-paddy grains)
  • The capability of the image processing technique in estimating the volume of very irregular small biomaterials
  • A new parameter called “cylindercity”, which can be used for some cylindrical crops, such as wheat and rice.
KEYWORDS
TOPICS
ABSTRACT
The application of an image processing technique is presented for the volume estimation of very irregular small biomaterials (wheat and rice-paddy grains). Two common cylindrical small biomaterials, the Alvand variety of wheat grain and the Neda variety of paddy grain were considered for examination. The captured images were exported to be processed by an image processing software (ImageJ) and the edge-extracted image was used in SolidWorks for the 3D reconstruction of the model. The revolved images in the SolidWork were used to estimate the volume of the examined grains. The estimated volume was then compared with the conventional mathematical expression and also with the real volume measurement using the fluid displacement method. Volume estimation using machine vision and image processing techniques has a considerably lower mean error (9.5%) in comparison to the mathematical error (14.7%). The average value of cylindricity for Alvand wheat was found to be equal to 82.34% at a moisture content of 11.83%. The new cylindricity factor had a significantly smaller standard deviation in comparison to the standard deviation of the sphericity factor for the examined cylindrical crops (61.5% for the wheat grains and 59.6% for the paddy grains). The new cylindricity factor can be used for the heat and mass transfer modelling of cylindrical crops.
 
REFERENCES (44)
1.
Aldalur A., Ángeles Bustamante M., and Barron L.J.R., 2019. Characterization of curd grain size and shape by 2-dimensional image analysis during the cheese making process in artisanal sheep dairies. J. Dairy Sci., 102(2), 1083-1095. https://doi.org/10.3168/jds.20....
 
2.
Al-Mahasneh M.A., and Rababah T.M., 2007. Effect of moisture content on some physical properties of green wheat. J. Food Eng., 79, 1467-1473. https://doi.org/10.1016/j.jfoo....
 
3.
Apinyavisit K., Nathakaranakule A., Mittal G.S., and Soponronnarit S., 2018. Heat and mass transfer properties of longan shrinking from a spherical to an irregular shape during drying. Biosys. Eng., 169, 11-21. https://doi.org/10.1016/j.bios....
 
4.
Araujo M.E.V.D., Barbosa E.G., de Oliveira A.C.L., Milagres R.S., Pinto F.A.C., and Corrêa P.C., 2020. Physical properties of yellow passion fruit seeds (Passiflora edulis) during the drying process. Scientia Hort., 261, 109032. https://doi.org/10.1016/j.scie....
 
5.
Arjenaki O.O., Moddares Motlagh A., and Ahmadi Moghaddam P., 2012. A new method for estimating surface area of cylindrical fruits (Zucchini) using digital image processing. Australian J. Crop Sci., 6(2), 1332-1336.
 
6.
Bulent Koc A., 2007. Determination of watermelon volume using ellipsoid approximation and image processing. Postharvest Biol. Technol., 45, 366-371. https://doi.org/10.1016/j.post....
 
7.
Chayjan R.A., Kaveh M., and Khayati S., 2017. Modeling some thermal and physical characteristics of terebinth fruit under semi industrial continuous drying. Food Measur., 11, 12-23. https://doi.org/10.1007/s11694....
 
8.
Chen J., Lian Y., and Yaoming L., 2020. Real-time grain impurity sensing for rice combine harvesters using image processing and decision-tree algorithm. Comput. Electron Agric., 175, 105591. https://doi.org/10.1016/j.comp....
 
9.
Curcio C., and Aversa M., 2014. Influence of shrinkage on convective drying of fresh vegetables: A theoretical model. J. Food Eng., 123, 36-49. https://doi.org/10.1016/j.jfoo....
 
10.
Da Costa A.Z., Figueroa H.E.H., and Fracarolli J.A., 2020. Computer vision based detection of external defects on tomatoes using deep learning. Biosys. Eng., 190, 131-144. https://doi.org/10.1016/j.bios....
 
11.
Demirbas H.Y. and Dursun I., 2007. Determination of some physical properties of wheat grains by using image analysis. Tarm Bilim. Der., 13 (3), 176-185.
 
12.
Dursun E., and Dursun I., 2005. Some physical properties of caper seed. Biosys. Eng., 92(2), 237-245. https://doi.org/10.1016/j.bios....
 
13.
Dziki D., and Laskowski J., 2005. Wheat Kernel physical properties and milling process. Acta Agrophysica, 6, 59-71.
 
14.
El Fawal Y.A., Tawfik M.A., and El Shal A.M., 2009. Study on physical and engineering properties for grains of some field crops. Misr J. Ag. Eng., 26(4), 1933-1951. https://doi.org/10.21608/mjae.....
 
15.
Forbes K., 2000. Volume estimation of fruit from digital profile image. M.Sc. Thesis Electronic Engineering, Cape Town.
 
16.
Unal H.G., 2009. Some physical and nutritional properties of hulled wheat. Tarim Bilim. Derg., 15(1), 58-64. https://doi.org/10.1501/Tarimb....
 
17.
Jafari H., Kalantari D., and Azadbakht M., 2018. Energy consumption and qualitative evaluation of a continuous band microwave dryer for rice paddy drying. Energy, 142, 647-654. https://doi.org/10.1016/j.ener....
 
18.
Kalantari D., 2016. Grain flow from different discharge gates in a grain seeder. Eng. Agric. Environ. Food, 9, 141-146. https://doi.org/10.1016/j.eaef....
 
19.
Kalantari D., and Eshtevad R., 2013. Influence of different tempering period and vacuum condition on the rice grain breakage. Cercetari Agronomic Moldava, 4(156), 5-13. https://doi.org/10.2478/v10298....
 
20.
Kaveh M., Abbaspour-Gilandeh Y., Fatemi H., and Chen G., 2021. Impact of different drying methods on the drying time, energy, and quality of green peas. J. Food Process Preserv., 45(6): e15503. https://doi.org/10.1111/jfpp.1....
 
21.
Kheiralipour K., Karimi M., Tabatabaeefar A., Naderi M., Khoubakht G., and Heidarbeigi K., 2008. Moisture- depend physical properties of wheat (Triticum aestivum L.). J. Agr. Technol., 4(1), 53-64.
 
22.
Khojastehnazhand M., Omid M., and Tabatabaeefar A., 2008. Determination of tangerine volume using image processing. Int. J. Food Proper., 13(4), 760-770. https://doi.org/10.1080/109429....
 
23.
Khoshtaghaza M.H., and Chayjan R., 2007. Effect of some physical properties on fluidization stability of grain products. Biosys. Eng., 98(2), 192-197. https://doi.org/10.1016/j.bios....
 
24.
Kiani M., Minaiei S., Maghsoudi H., and Ghasemi V.M., 2008. Moisture dependent physical properties of red bean (Phaseolus vulgaris L.) grains. Int. Agrophysics, 22, 231-237.
 
25.
Mirasi A., Asoodar M.A., Samadi M., and Kamran E., 2014. The evaluation of wheat losses harvesting in two conventional combine (John Deere1165, 955) in Iran. Int. J.Advanc. Biolog. Biomed. Res., 2(5), 1417-1425.
 
26.
Mohsenin N.N., 1978. Physical Properties of Plant and Animal Materials. Gordon Breach Science Publisher, New York, USA.
 
27.
Munder S., Argyropoulos D., and Müller J., 2017. Class-based physical properties of air-classified sunflower seeds and kernels. Biosys. Eng., 164, 124-134. https://doi.org/10.1016/j.bios....
 
28.
Mustafa C., 2007. Physical properties of barbunia bean seed. J. Food Eng., 80, 353-358. https://doi.org/10.1016/j.jfoo....
 
29.
Narendra V.G., and Hareesh K.S., 2010. Prospects of computer vision automated grading and sorting systems in agricultural and food products for quality evaluation. Int. J. Computer Appl., 1, 0975- 8887. doi:10.5120/111-226.
 
30.
Navarro S. and Noyes R.T., 2002. The Mechanics and Physics of Modern Grain Aeration Management. CRC Press. https://doi.org/10.1201/978142....
 
31.
Pourdarbani R., Sabzi S., Kalantari D., Hernández-Hernández J.L., and Arribas J.I., 2020. A computer vision system based on majority-voting ensemble neural network for the automatic classification of three chickpea varieties. Foods, 9(2), 113. https://doi.org/10.3390/foods9....
 
32.
Rashidi M., Seyfi K., and Gholami-Parashkouhi M., 2007. Determination of kiwifruit volume using image processing. ARPN J. Agr. Biolog. Sci., 2(6): 17-22.
 
33.
Razavi M.A., and Akbari R., 2011. Biophysical properties of agricultural crops and food materials. Ferdowsi University of Mashad Publications, 39-47.
 
34.
Sabzi S., Pourdarbani R., Kalantari D., and Panagopoulos T., 2020. Designing a fruit identification algorithm in orchard conditions to develop robots using video processing and majority voting based on hybrid artificial neural network. Appl. Sci., 10(1), 383. https://doi.org/10.3390/app100....
 
35.
Sadrnia H., Rajabipour A., Jafary A., Javadi A., and Mostofi Y., 2007. Classification and analysis of fruit shapes in long type watermelon using image processing. Int. J. Agr. Biolog., 1, 68-70.
 
36.
Saini M., Singh J., and Prakash N.R., 2012. Analysis of wheat grain varieties using image processing-A Review. Int. J. Sci. Res., 3(6), 490-495.
 
37.
Shkelqim K., and Joachim M., 2010. Determination of physical, Mechanical and chemical properties of seeds and kernels of (Jatropha curcas L.). Int. Crop. Prod., 32(2), 129-138. https://doi.org/10.1016/j.indc....
 
38.
Solomon W.K., and Zewdu A.D., 2009. Moisture-dependent physical properties of niger (Guizotia abyssinica Cass.) seed. Int. Crop. Prod., 29, 165-170. https://doi.org/10.1016/j.indc....
 
39.
Tabatabaeefar A., 2003. Moisture-dependent physical properties of wheat. Int. Agrophysics, 17, 207-211.
 
40.
Varnamkhasti M.G., Mobli H., Jafari A., Soltanabadi M.H., Rafiee S., and Sadeghi R., 2007. Some physical properties of rough rice (Oryza sativa L.) grain. J. Cereal Sci., 47(3), 496-501. https://doi.org/10.1016/j.jcs.....
 
41.
Vongpradubchai S., and Rattanadecho P., 2009. The microwave processing of wood using a continuous microwave belt dryer. J. Chem. Eng., Process: Process Int., 48, 997-1003. https://doi.org/10.1016/j.cep.....
 
42.
Wang T.Y., and Nguang S.K., 2007. Low cost sensor for volume and surface area computation of axisymmetric agricultural products. J. Food Eng., 79, 870-877.https://doi.org/10.1016/j.jfoo....
 
43.
Xie W., Wang F., and Yang D., 2019. Research on carrot surface defect detection methods based on machine vision. IFAC-Papers on Line, 52(30), 24-29. https://doi.org/10.1016/j.ifac....
 
44.
Zayas I., Lai F.S., and Pomeranz Y., 1986. Discrimination between wheat classes and varieties by image analysis. J. Cereal Chem., 63(1), 52-56.
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top