Predicting the seeding quality of radish seeds with the use of a family of Nakagami distribution functions
More details
Hide details
Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
Department of Horticulture and Forestry Machinery, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
Department of Agronomy, Modern Technologies and Informatics, Łomża State University of Applied Sciences, Studencka 19, 18-402 Łomża, Poland
Faculty of Technical Sciences and Design Arts, National Academy of Applied Sciences in Przemyśl, Książąt Lubomirskich 6, 37-700 Przemyśl, Poland
Department of Production Engineering, Logistics and Applied Computer Science, University of Agriculture in Kraków, Balicka 116 B, 30-149 Kraków, Poland
Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
Department of Heavy Duty Machines and Research Methodology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-957 Olsztyn, Poland
Final revision date: 2023-10-21
Acceptance date: 2023-11-08
Publication date: 2023-12-22
Corresponding author
Janusz Zarajczyk   

Department of Horticulture and Forestry Machinery, University of Life Sciences in Lublin, Poland
Int. Agrophys. 2024, 38(1): 21-29
  • Creation of a mathematical model for the purpose of measuring analysis and evaluating the uniformity of seed sowing based on the Nakagami family of distributions
  • The mathematical approach to assessing the sowing quality, taking into account the adjustment of the Nakagami distribution
  • A new way of evaluating sowing quality to predict the distance between seeds in rows
The study evaluated the seeding quality of radish seeds cv. Saxa Polana (percentage of single seeds, double seeds and missed seeds (skips) sown with a Max Pneumatic S 156 seed drill fitted with a pneumatic seed dosing unit set at different forward speeds of a metering unit and different sowing disc speeds. The seeding quality was analysed using Nakagami distribution functions, a chi-squared goodness of fit test, linear regression functions, and the ISO 7256/1, 1984 (E) Standard. The diagrams predicting the effect of the different speeds on the percentage of singles, doubles and skips were highly consistent with the results of the seeding quality analysis based on the ISO 7256/1, 1984 (E) Standard. The authors relied on Nakagami distribution functions to develop a new method for predicting the in-row distance between seeds within the analysed range of speeds, including those which were not empirically tested speeds. The proposed method can be used to predict seeding quality at different speeds when only the selected settings of the dosing unit are taken into account in the analysis. This approach significantly shortens the research time and also decreases the relevant costs.
This research received no external funding.
The authors declare no conflict of interest.
Bai S., Yuan Y., Niu K., Shi Z., Zhou L., Zhao B., Wei L., Liu L., Zheng Y., An S., and Ma Y., 2022. Design and experiment of a sowing quality monitoring system of cotton precision hill-drop planters. Agriculture, 12, 1117.
Banasiak J., and Michalak J., 2000. An evaluation of precision seeding quality in a test stand (in Polish). Probl. Inż. Roln., 4(30), 21-28.
Błaszczak P., and Przybył J., 2000. The use of Excel spreadsheets for evaluating precision seeding parameters (in Polish). Agric. Eng., 3(14), 29-40.
Born Z., Angelus W., Dąbrowska B., Doruchowski R.W., Fajkowska H., Gapiński M., Glaser T., Golcz L., Kozłowska M., Kryńska W., Lewandowska A., Małachowski A., Nieć H., Noszczyńska K., Nowacka W., Pudelski T., and Woyke H., 1982. Comprehensive guide to vegetable cultivation (in Polish. PWRiL Warszawa, Poland.
Bozdogan A.M., 2006. Uniformity of within-row distance in precision seeders: laboratory experiment. J. Appl. Sci., 6(10), 2281-2286.
Bracy R.P., and Parish R.L., 1998. Seeding uniformity of precision seeders. Hort. Technology, 8, 182-185.
Bredykhin V., Tikunov B., Slipchenko M., Alfyorov O., Bogomolov A., Shchur T., Kocira S., Kiczorowski P., and Paslavskyy R., 2023. Improving efficiency of corn seed separation and calibration process. Agric. Eng., 27(1), 241-253.
Çakir E., Aygün I., Yazgi A., and Karabulut Y., 2016. Determination of in-row seed distribution uniformity using image processing. Turkish J. Agric. Forestry, 40, 874-881.
Ding Y.C., Chen L.Y., Dong W.J., Wang W.C., Liu X.D., Wang K.Y., and Liu W.P., 2021. Design and experiment of the sowing monitoring system for a wide-width rapeseed planter. Trans. Chin. Soc. Agric. Eng., 13, 38-45. (Google Scholar).
Dobrowska-Kopecka Z., Doruchowski R.W., and Gapiński M., 1999. Vegetable production. PWRiL. Warsaw, Poland.
Estler M., 1985. Mais, In der Saattechnik liegen noch Reserven. DLG – Mitteilungen, 6, 314-316.
Feder S., Kęska W., Kośmicki Z., Selech J., Włodarczyk K., and Gierz Ł., 2012. Laboratory station for testing grain sowing process. J. Res. Appl. Agric. Eng., 57(1), 34-36.
Findura P., Malaga-Toboła U., Kwaśniewski D., Stasiak M., Gugała M., Sikorska A., and Gancarz M., 2023. Influence of the physical properties of sugar beet seeds over the work quality of the seeding mechanism. Int. Agrophys., 37, 171-178.
Findura P., Šindelková I., Rusinek R., Karami H., Gancarz M., and Bartoš P., 2022. Determination of the influence of biostimulants on soil properties and field crop yields. Int. Agrophys., 36, 351-359.
Firsov M.M. and Cherepakhin A.N., 2002. The main trends in the development of agricultural machines (in Russian). Tractors Farming Machines, 3, 36-39.
Frederick J.R., and Marshall H.G., 1985. Grain yield and yield components of soft red winter wheat as affected by management practices. Agronomy J., 77, 495-499.
Fritzsch K., 1983. Einzelkornsamaschinen – Entwicklungslinien und technische Erkenntnisse. Agrartechnik, Berlin., 33, 7-8.
Gierz Ł., 2015. Comparative studies of grain flow sensor in row drills and single seeders. J. Res. App. Agr. Eng., 60(1), 11-13.
Ignaciuk S. and Zarajczyk J., 2020. Assessment of selected parameters of sowing quality of Vistula parsley seeds with a precision seed drill with a pneumatic seeding system. Agric. Eng., 24, 2, 77-88.
International standard ISO 7256/1, 1984. Sowing equipment-test methods-single seed drills (precision drills).
International standard ISO 7256/2, 1984. Sowing equipment-test methods-seed drills for sowing in lines.
Jia-lei Zhang, Yun Geng, Feng Guo, Xin-Guo Li, and Shu-Bo Wan, 2020. Research progress on the mechanism of improving peanut yield by single-seed precision sowing. J. Integrative Agric., 19(8), 1919-1927,
John D., 2021. Monitoring and Documentation. Available online:
Joseph K.D.S.M., Alley M.M., Brann D.E., and Gravelle W.D., 1985. Row spacing and seeding and rate effects on yield and yield components of soft red winter wheat. Agr. J., 77, 211-214.
Kachman S.D. and Smith J.A., 1995. Alternative measures of accuracy in plant spacing for planters using single seed metering. Trans. ASAE, 38(2), 379-387.
Kaliniewicz Z., Żuk Z., and Kusińska E., 2018. Physical properties of seeds of eleven spruce species. Forests, 9, 617.
Karayel D., Wiesehoff M., Ӧzmerzi A., and Müller J., 2006. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system. J. Comp. Elect. Agr., 50(2), 89-96.
Kęska W., 2002. On the essence, perspectives and research problems in precision agriculture (in Polish). J. Res. App. Agr. Eng., 47(2), 4-7.
Kęska W. and Kośmicki Z., 1986. Method and device for seed metering (in Polish). Patent UP RP, PL 134813.
Krawczuk A., Parafiniuk S., Przywara A., Huyghebaert B., Fabienne R., Limbourg Q., Mostade O., and Kocira S., 2023. Technical parameters of spraying with a biostimulant as a determinant of biometrical properties and yield of soybean seeds. Agric. Eng., 25(1), 2021, 171-179.
Krzaczek P., Szyszlak J., and Zarajczyk J., 2006. Assessment of the influence of selected operating parameters of S071/B KRUK seeder on seeding Sida hermaphrodita Rusby seeds. Int. Agrophysics, 20, 297-300.
Krzysiak Z., Samociuk W., Skic A., Bartnik G., Zarajczyk J., Szmigielski M., Dziki D., Wierzbicki S., and Krzywonos L., 2017. Effect of sieve drum inclination angle on wheat grain cleaning in a novel rotary cleaning device. Trans. ASABE, 60(5) 1751-1758,
Krzysiak Z., Samociuk W., Zarajczyk J., Kaliniewicz Z., Pieniak D., and Bogucki M., 2020a. Analysis of the sieve unit inclination angle in the cleaning process of oat grain in a rotary cleaning device. Processes, 8(3), 346, 1-16,
Krzysiak Z., Samociuk W., Zarajczyk J., Beer-Lech K., Bartnik G., Kaliniewicz Z., and Dziki D., 2020b. Effect of sieve unit inclination angle in a rotary cleaning device for barley grain. Trans. ASABE, 63(3), 609-618,
Lan Y., Kocher M.F., and Smith A., 1999. Opto-electronic sensor system for laboratory measurement of planter seed spacing with small seeds. J. Agricult. Eng. Res., 72, 119-127.
Łazarczyk A., Lipiński A., and Rawa T., 1996. The application of digital image analysis in evaluations of seeding uniformity with a pin feeding mechanism (in Polish). Roczniki Akademii Rolniczej w Poznaniu, 286, Rolnictwo, 49, 121-129.
Lipiński A., Markowski P., and Rawa T., 2004. An attempt of evaluation of wheat seeds dosage efficiency and uniformity at bottom and upper sowing with pin sowing units (in Polish). Agr. Eng., 4(59), 69-76.
Marczuk A., Caban J., Aleshkin A.V., Savinykh P.A., Isupov A.Y., and Ivanov I.I., 2019. Modeling and simulation of particle motion in the operation area of a centrifugal rotary chopper machine. Sustainability, 11, 4873.
Markowski P., 2017. Technical and technological parameters of performance evaluation of multipurpose and special single-seed drills based on seeding uniformity (in Polish). Publishing House of the University of Warmia and Mazury in Olsztyn, 148.
Matlab documentation of the chi2gof function. 2023.
Matlab documentation of the fitdist function 2023.
Özmerzi A., Karayel D., and Topakci M., 2002. PM-power machinery: Effect of sowing depth on precision seeder uniformity. Biosys. Eng., 82(2), 227-230.
Ozturk A., Caglar O., and Bulut S., 2006. Growth and yield response of facultative wheat to winter sowing, freezing sowing and spring sowing at different seeding rates. J. Agron. Crop Sci., 192, 10-16.
Solie J.B., Solomon S.G., Seft K.P., Peeper T.F., and Koscebiy J.A., 1991. Reduced row spacing for improved wheat yields in weed-free and weed-infested fields. Trans. ASAE, 34(4), 1654-1660.
Szparaga A., 2023a. Biostimulating extracts from Arctium lappa L. as ecological additives in soybean seed coating applications. Agric. Eng., 27(1), 1-10.
Szparaga A., 2023b. From biostimulant to possible plant bioprotectant agents. Agric. Eng., 27(1), 87-98.
United States Patent 4.555.624 (1983).
United States Patent 8.441.247 (1995).
Valério I.P., Carvalho F.I.F., Benin G., Silveira G., Silva J.A.G., Nornberg R., Hagemann T., Souza Luche H., and Oliveira A.C., 2013. Seeding density in wheat: the more, the merrier? Sci. Agric., 70(3), 176-184.
Zhang X.J., Chen Y., Shi Z.L., Jin W., Zhang H.T., Fu H., and Wang D.J., 2021. Design and experiment of double-storage turntable cotton vertical disc hole seeding and metering device. Trans. Chin. Soc. Agric. Eng., 19, 27-36.
Journals System - logo
Scroll to top