Spatial variability of thermal properties in relation to the application of selected soil-improving cropping systems (SICS) on sandy soil
More details
Hide details
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45 E, 15-351 Białystok, Poland
Bogusław Usowicz   

Department of Metrology and Modelling of Agrophysical Processes, Institute of Agrophysics, Polish Academy of Sciences, ul Doświadczalna 4, 20-290, Lublin, Poland
Final revision date: 2022-07-12
Acceptance date: 2022-07-14
Publication date: 2022-09-16
Int. Agrophys. 2022, 36(4): 269–284
  • Soil–improving cropping systems (SICS) affect the variability of soil thermal properties
  • SICS providing organic matter increases thermal properties in wet but not in dry years after tillage
  • Cokriging (OCK) vs. kriging (OK) better interpolates soil thermal properties
  • The use of sand content as an auxiliary variable in OCK improves mapping thermal properties
The study aimed to determine the effect of randomly applied soil-improving cropping systems on the variability of soil thermal conductivity , heat capacity, and thermal diffusivity over the course of a 3-year (2016-2018) study. The field experiment included the control and the following soil-improving cropping systems: liming, leguminous catch crops for green manure, farmyard manure, and liming+leguminous catch crops+farmyard manure together with spring oats (2017) and spring wheat (2018). The parameters such as bulk density, water content, and values of soil thermal conductivity, heat capacity, and thermal diffusivity have been determined. The thermal properties were measured at the current water content in situ and in water-saturated and dry soil states in the laboratory. The thermal properties in the wet year of 2017 increased in the subareas with a predominance of leguminous catch crops for green manure, farmyard manure, and liming+leguminous catch crops+farmyard manure, whereas the soil-improving cropping systems effect was not consistent after stubble tilling in the dry year of 2018. Cross-semivariograms which used the sand content as an auxiliary variable and cokriging produced a better prediction than the semivariograms and kriging. The fractal analysis indicated that the number of subareas differing in thermal properties was mainly modified by water content and bulk density. The spatial spread of the soil thermal properties during the water-saturated and dry states increased in subareas with a higher bulk density.
This work was partially funded by HORIZON 2020, the European Commission, Programme: H2020-SFS-2015-2: SoilCare for profitable and sustainable crop production in Europe, project No. 677407 (SoilCare, 2016-2021) and by WZ/WB-INL/3/2021 from the science funds from the Ministry of Science and Higher Education in Poland.
The authors declare no conflict of interest
Abu-Hamdeh N.H. and Reeder R.C., 2000. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Sci. Soc. Am. J., 64, 1285-1290,
Akter M., Miah M.A., Hassan M.M., Mobin M.N., and Baten M.A., 2015. Textural influence on surface and subsurface soil temperatures under various conditions. J. Environ. Sci. Nat. Resour., 8(2), 147-151,
Andry H., Yamamoto T., Irie T., Moritani S., Inoue M., and Fujiyama H., 2009. Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality. J. Hydrol., 373, 177-183, https://doi:10.1016/j.jhydrol.....
Ajayi A.E., Holthusen D., and Horn R., 2016. Changes in microstructural behaviour and hydraulic functions of biochar amended soils. Soil Tillage Res., 155, 166-175, doi:10.1016/j.still.2015.08.007.
Batjes N.H., Ribeiro E., and van Oostrum A., 2020. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data, 12, 299-320,
Białousz S., Marcinek J., Stuczyński T., and Turski R., 2005. Soil survey, soil monitoring and soil databases in Poland. European Soil Bureau – Research Report No. 9 ESB-RR9, 263-273.
Blake G.R. and Hartge K.H., 1986. Bulk density. In: Klute A. (Ed.), Methods of Soil Analysis, 546 Part 1: Physical and Mineralogical Methods-Agronomy Monograph No. 9. ASASSSA 547, 363-375 (Madison, Wisconsin, U.S.A),
Bolinder M.A., Crotty F, Elsen A., Frąc M., Kismanyoky T., Lipiec J., Tits M., Toth Z., and Kätterer T., 2020. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews. Mitig. Adapt. Strateg. Glob. Change, 25, 929-952,
Bronick C.J. and Lal R., 2005. Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA. Soil Tillage Res., 81, 239-252,
Cambardella C.A., Moorman T.B., Parkin T.B., Karlen D.L., Novak J.M., Turco R.F., and Konopka A.E., 1994. Field-scale variability of soil properties in Central Iowa soils. Soil Sci. Soc. Am. J., 58, 1501-1511,
Dahiya I.S., Ritcher J., and Mark P.S., 1984. Soil spatial variability: review. Int. J. Trop. Agric., 11, 1-102.
Dec D., Dörner J., and Horn R., 2009. Effect of soil management on their thermal properties. J. Plant Nutr. Soil Sci., 9, 26-39,
Fleskens L., Ritsema C., Bai Z., Geissen V., Mendes de Jesus J., da Silva V., Teeuwen A., and Yang X., 2020. Tested and validated final version of SQAPP. 143 ppiSQAPER Project Deliverable 4.2. The Soil Quality Mobile App (SQAPP),
Gamage D.N.V., Biswas A., and Strachan I.B., 2019. Spatial variability of soil thermal properties and their relationships with physical properties at field scale. Soil Tillage Res., 193, 50-58,
Gliński J. and Lipiec J., 1990. Soil Physical Conditions and Plant Roots. 260 pp, First Published1st edition. CRC Press Reissued 2018 by CRC Press Taylor & Francis Group.
He H., Liu L., Dyck M., Si B., and Lv J., 2021. Modelling dry soil thermal conductivity. Soil Tillage Res., 213, 105093.
Heitman J.L., Horton R., Ren T., Nassar I.N., and Davis D.D., 2008. A test of coupled soil heat and water transfer prediction under transient boundary temperatures. Soil Sci. Soc. Am. J., 72 (5), 1197-1207,
Heitman J., Zhang X., Xiao X., Ren T., and Horton R., 2020. Advances in heat-pulse methods: Measuring soil water evaporation with sensible heat balance. Soil Sci. Soc. Am. J., 84, 1371-1375,
Hengl T., Mendes de Jesus J., Heuvelink G.B.M., Ruiperez-Gonzalez M., Kilibarda M., Blagotić A., Shangguan W., Wright M.N., Geng X., Bauer-Marschallinger B., Guevara M.A., Vargas R., MacMillan R.A., Batjes N.H., Leenaars J.G.B., Ribeiro E., Wheeler I., Mantel S., and Kempen B., 2017. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE, 12 (2), e0169748,
Hessel R., Wyseure G., Panagea I., Alaoui A., Reed M.S., van Delden H., Muro M., Mills J., Oenema O., Areal F., van den Elsen E., Verzandvoort S., Assinck F., Elsen A., Lipiec J., Koutroulis A., O’Sullivan L., Bolinder M., Fleskens L., Kandeler E., Montanarella L., Heinen M., Toth Z., Hallama M., Cuevas J., Baartman J., Piccoli I., Dalgaard T., Stolte J., Black J., and Chivers C., 2022. Soil improving cropping systems for sustainable and profitable farming in Europe. Land, 11(6), 780,
ISO, 1995. International Organization for Standardization 13536: Soil Quality – Determination of the Potential Cation Exchange Capacity and Exchangeable Cations Using Barium Chloride Solution Buffered at pH (7 pp).
Jankowski M., Przewoźna B., and Bednarek R., 2011. Topographical inversion of sandy soils due to local conditions in Northern Poland. Geomorphology (Amst), 135, 277-283,
Keiblinger K.M., Lisa M., Bauer M., Deltedesco E., Holawe F., Unterfrauner H., Zehetner F., and Peticzka R., 2016. Quicklime application instantly increases soil aggregate stability. Int. Agrophys., 30(1), 123-128,
Krasowicz S., Oleszek W., Horabik J., Dębicki R., Jankowiak J., Stuczyński T., and Jadczyszyn J., 2011. Rational management of the soil environment in Poland. Pol. J. Agron., 7, 43-58.
Lal R., 2020. Soil organic matter and water retention. Agron. J., 112, 3265-3277,
Lipiec J. and Hatano R., 2003. Quantification of compaction effects on soil physical properties and crop growth. Geoderma, 16, 107-136,
Lipiec J., Nosalewicz A., and Pietrusiewicz J., 2011. Crop responses to soil physical conditions. In: Encyclopedia of Agrophysics (Eds J. Gliński, J. Horabik, and J. Lipiec), 167-176, Springer Dordrecht, Heidelberg, London, New York,
Lipiec J. and Usowicz B., 2021. Quantifying cereal productivity on sandy soil in response to some soil-improving cropping systems. Land, 10(11), 1199,
Liu Z., Xu J., Li X., and Wang J., 2018. Mechanisms of biochar effects on thermal properties of red soil in south China. Geoderma, 323, 41-51,
Mady A.Y. and Shein E.V., 2016. Modeling soil thermal diffusivity as a function of soil moisture. Bull. Orenburg State Univ., 12(200),56-60.
Mellander P.E., Bishop K., and Lundmark T., 2004. The influence of soil temperature on transpiration: a plot scale manipulation in a young scots pine stand. For. Ecol. Manag., 195, 15-28,
Mitchell-Forsytk B., Haruna S., and Downs K., 2021. Variability of soil thermal properties along a catena in Middle Tennessee, USA. Int. Agrophys., 35(2), 209-219.
Nagihara S., Hedlund M., Zacny K., and Taylor P.T., 2014. Improved data reduction algorithm for the needle probe method applied to in-situ thermal conductivity measurements of lunar and planetary regoliths. Planet. Space Sci., 92, 49-56,
Novák P., Chyba J., Kumhála F., and Procházka P., 2014. The measurement of stubble cultivator draught force under different soil conditions. Agron. Res., 12, 135-142.
Ochsner T.E., Horton R., and Ren T., 2001. A new perspective on soil thermal properties. Soil Sci. Soc. Am. J., 65, 1641-1647,
Ochsner T.E., Sauer T.J., and Horton R., 2007. Soil heat capacity and heat storage measurements in energy balance studies. Agron. J., 99, 311-314,
Oenema O., Heinen M., Rietra R., and Hessel R., 2017. A review of soil-improving cropping systems: Wageningen Environmental Research, Scientific Report 06, 1-59.
Ostrowska A., Gawliński S., and Szczubiałka Z., 1991. Analyses and Evaluation Methods of Soil and Plants (in Polish). Institute of Environmental Protection, Warsaw, p. 334.
Peng S., Piao S., Wang T., Sun J., and Shen Z., 2009. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol. Biochem., 41, 1008-1014. doi:10.1016/j.soilbio.2008.10.023.
Reichert J.M., Albuquerque J.A., Kaiser D.R., Reinert D.J., Urach F.L., and Carlesso R., 2009. Estimation of water retention and availability in soils of Rio Grande do Sul. Rev. Bras. Cienc. Solo, 33, 1547-1560,
Robertson G.P., 2008. GS+: Geostatistics for the Environmental Sciences. Gamma Design Software, Plainwell, MI, USA.
Roshankhah S., Garcia A.V., and Santamarina J.C., 2021. Thermal conductivity of sand-silt mixtures. J. Geotech. Geoenviron. Eng., 147(2), 06020031,
Rutkowska A. and Pikuła D., 2013. Effect of crop rotation and nitrogen fertilization on the quality and quantity of soil organic matter. In: Soil Processes and Current Trends in Quality Assessment (Ed. M.C. Hernandez Soriano). Intech Open, 249-267,
Schjønning P., 2021. Thermal conductivity of undisturbed soil – Measurements and predictions. Geoderma, 402, 115188.
Schjønning P., Heckrath G., and Christensen B.T., 2009. Threat to soil quality in Denmark. A review of existing knowledge in the context of the EU soil thematic strategy. In DJF Report Plant Science no. 143; Aarhus University: Tjele, Denmark, 11-121.
Smith P., Soussana J.‐F., Angers D., Schipper L., Chenu C., Rasse D.P., Batjes N.H., van Egmond F., McNeill S., Kuhnert M., and Arias‐Navarro C., 2020. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Change Biol. Bioenergy, 26, 219-241,
Soussana J.-F., Lutfalla S., Ehrhardt F., Rosenstock T., Lamanna C., Havlík P., Richards M., Wollenberg E., Chotte J.-L., Torquebiau E., Ciais P., Smith P., and Lal R., 2017. Matching policy and science: Rationale for the ‘4 per 1000 – soils for food security and climate’ initiative. Soil Tillage Res., 188, 3-15,
Tarnawski V.R., Wagner B., Leong W.H., McCombie M., Coppa P., and Bovesecchi G., 2021. Soil thermal conductivity model by de Vries: Re-examination and validation analysis. Eur. J. Soil Sci., 72(5), 1940-1953,
Thorsen M.K., Hopkins D.W., Woodward S., and McKenzie B.M., 2010. Resilience of microorganisms and aggregation of a sandy calcareous soil to amendment with organic and synthetic fertilizer. Soil Use Manage., 26, 149-157,
Usowicz B., 1995. Evaluation of methods for soil thermal conductivity calculations. Int. Agrophysics., 9(2), 109-113.
Usowicz B., Hajnos M., Sokołowska Z., Józefaciuk G., Bowanko G., and Kossowski J., 2004. Spatial variability of physical and chemical soil properties in a field and commune scale (in Polish). Acta Agroph., 103, 237-247.
Usowicz B., Lipiec J., and Usowicz J.B., 2008. Thermal conductivity in relation to porosity and hardness of terrestrial porous media. Planet. Space Sci., 56, 438-447,
Usowicz B., Lipiec J., Usowicz J., and Marczewski W., 2013. Effects of aggregate size on soil thermal conductivity: comparison of measured and model-predicted data. Int. J. Heat Mass Transf., 57, 536-541,
Usowicz B., Lipiec J., Łukowski M., Marczewski W., and Usowicz J., 2016. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil Tillage Res., 164, 45-51,
Usowicz B. and Lipiec J., 2017. Spatial variability of soil properties and cereal yield in a cultivated field on sandy soil. Soil Tillage Res., 174, 241-250,
Usowicz B., Łukowski M.I., Rudiger C., Walker J.P., and Marczewski W., 2017. Thermal properties of soil in the Murrumbidgee River Catchment (Australia). Int. J. Heat Mass Transf., 115, 604-614,
Usowicz B. and Lipiec J., 2019. The effect of exogenous organic matter on the thermal properties of tilled soils in Poland and the Czech Republic. J. Soils Sediments, 20, 365-379,
Usowicz B., Lipiec J., Łukowski M., Bis Z., Usowicz J., and Latawiec A.E., 2020. Impact of biochar addition on Murrumbidgee River Catchment soil thermal properties: Modelling approach. Geoderma, 376, 114574,
Usowicz B. and Lipiec J., 2022. Assessment of the spatial distribution of cereal yields on sandy soil related to the application of soil-improving cropping systems (SICS). Sci. Total Environ., 830, 154791,
WRB IUSS Working Group., 2015. World reference base for soil resources 2014, update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106, FAO, Rome.
Wysokiński A. and Kuziemska B., 2019. The sources of nitrogen for yellow lupine and spring triticale in their intercropping. Plant Soil Environ., 65, 145-151,
Valkama E., Lemola R., Känkänen H., and Turtola E., 2015. Meta-analysis of the effects of under sown catch crops on nitrogen leaching loss and grain yields in the Nordic countries. Agric. Ecosyst. Environ., 203, 93-101,
Xu X., Luo Y., and Zhou J., 2012. Carbon quality and the temperature sensitivity of soil organic carbon decomposition in a tallgrass prairie. Soil Biol. Biochem., 50, 142-148,
Yost J.L. and Hartemink A.E., 2019. Chapter four – Soil organic carbon in sandy soils: A review. Adv. Agron., 158, 217-230,
Zaniewicz-Bajkowska A., Rosa R., Kosterna E., and Franczuk J., 2013. Catch crops for green manure biomass yield and macroelement content depending on the sowing date. Acta Sci. Pol., Agricultura, 12 (1), 65-79.
Zhao Y. and Sia B., 2019. Thermal properties of sandy and peat soils under unfrozen and frozen conditions. Soil Tillage Res., 89, 64-72,
Zhang Z., Zhang F., and Muhammed R.D., 2021. Effect of air volume fraction on the thermal conductivity of compacted bentonite materials. Engineering Geology, 284, 106045,