Static magnetic fields as a factor in modification of tissue and cell structure: a review
More details
Hide details
Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszów University, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
Laboratory of Physiotherapy in Developmental Disorders, Institute of Health Sciences, College of Medical Sciences, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
Pomology, Nursery and Enology Department, University of Life Sciences in Lublin, Głęboka 28, 20-400 Lublin, Poland
Institute of Technology and Life Sciences, National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
Final revision date: 2023-12-04
Acceptance date: 2023-12-14
Publication date: 2024-01-11
Corresponding author
Bogdan Adam Saletnik   

Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601, Rzeszów, Poland
Tomasz Lipa   

Pomology, Nursery and Enology Department, University of Life Sciences in Lublin, Głęboka 28, 20-400 Lublin, Poland
Int. Agrophys. 2024, 38(1): 43-75
  • The static magnetic field (SMF) is an indispensable factor in the natural environment.
  • A moderate SMF in the most commonly used range of 2–80 mT has a potential application in the formation and re-modeling of plants and animals, including human cells.
  • SMFs can significantly change the potential of the cell membrane, and thus can have a significant impact on the properties of the cell.
This review is intended to contribute to the evidence of the effects of static magnetic field on cells and tissue, as well as to present research results that will elucidate the complex matters involved in the formation and remodeling of cells. The cell characteristics studied in the papers that are reviewed include cell viability and proliferation, aggregation and their differentiation, structure and membrane potential. A moderate static magnetic field in the most commonly used range of 2-80 mT has potential application in the formation and remodeling of plant and human cells. However, in the case of cancer cells, the range of fields commonly used was 0.2-9 T. Magnetism promotes changes in plant cell growth, which prompts the cell to proliferate, thereby ensuring an increased rate of biomass production. Some researches presented the enhancement of the differentiation of plant cells and skeletal muscle tissue by over 30% at 80 mT static magnetic field. Changes in the cell cycle and growth reflect directly on the cell number and viability and provide useful information to detect modifications in the cell machinery. Static magnetic field, depending on its intensity, enhances cell proliferation and thus may improve, among other processes, tissue regeneration, wound healing and the inhibition of cancer cell proliferation. Researchers showed, among other things, that cells under the influence of static magnetic field changed their shape, had a larger chloroplast, stiffer cell wall, density of the cytoskeleton and cytoplasm contained several mitochondria. Numerous studies also discussed the behavior of the cell membrane of plant and animal organisms, including humans, under the influence of an static magnetic field. The effects of static magnetic field on the cell membrane of plant and human cells were similar. The research results indicate that static magnetic fields can significantly change membrane depolarization and its potential that regulates ion movement and thus can have a significant impact on the properties and biological functionality of the cell. Studies have shown that continuous application of static magnetic field caused deformation and damage of cell membrane. Based on the theoretical analyses presented also in this review, it can be concluded that static magnetic field affects cells and tissue, giving them changes in properties and behaviors and modulates, e.g. in the activity of ion channels. Thus it may produce effects leading to changes in the functioning of the cell. It is possible to formulate directions for further research aimed at using static magnetic fields for the non-invasive remodeling and formation of plant and human cells.
This work was supported by the program of the Ministry of Science and Higher Education “Regional Initiative of Excellence” in the years 2019–2022 (project number 026/RID/2018/19; the amount of financing totaling PLN 9 542 500.00).
The authors declare no conflict of interest.
Abdolmaleki P., Ghanati F., Sahebjamei H., and Sarvestani A.S., 2007. Peroxidase activity, lignification and promotion of cell death in tobacco cells exposed to static magnetic field. Environmentalist, 27, 435-440.
Accardi A., 2015. Lipids link ion channels and cancer: Membrane voltage connects lipid organization to cell proliferation. Science (New York, NY), 349, 789.
Afzal I., Noor M., Bakhtavar M., Ahmad A., and Haq Z., 2015. Improvement of spring maize performance through physical and physiological seed enhancements. Seed Sci. Technol., 43, 238-249.
Alam M.K., Awawdeh M., Alsaeed S., Khanagar S.B., Abutayyem H., Alswairki H.J., and Hajeer M.Y., 2023. A systematic review and meta-analysis on the associated effects of static magnetic fields on orthodontic tooth movement. Applied Sci., 13, 8709.
Albuquerque W.W.C., Costa R.M.P.B., Fernandes T.d.S., and Porto A.L.F., 2016. Evidences of the static magnetic field influence on cellular systems. Progress Biophysics Molecular Biol., 121, 16-28.
Babaei-Ghazvini A., Cudmore B., Dunlop M.J., Acharya B., Bissessur R., Ahmed M., and Whelan W.M., 2020. Effect of magnetic field alignment of cellulose nanocrystals in starch nanocomposites: Physicochemical and mechanical properties. Carbohydrate Polymers, 247, 116688.
Bahadir A., Beyaz R., and Yildiz M., 2018. Effect of magnetic field on in vitro seedling growth and shoot regeneration from cotyledon node explants of Lathyrus chrysanthus boiss. Bioelectromagnetics, 39, 547-555.
Barbic M., 2019. Possible magneto-mechanical and magneto-thermal mechanisms of ion channel activation in magnetogenetics. Elife, 8, e45807.
Bauer L.M., Costa J.A.V., da Rosa A.P.C., and Santos L.O., 2017. Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cul-tivations. Bioresource Technol., 244, 1425-1432.
Belyavskaya N., 2001. Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields. Advances Space Res., 28, 645-650.
Belyavskaya N., 2004. Biological effects due to weak magnetic field on plants. Advances Space Res., 34, 1566-1574.
Bialecka-Fornal M., Lee H.J., DeBerg H.A., Gandhi C.S., and Phillips R., 2012. Single-cell census of mechanosensitive channels in living bacteria. PloS one, 7, e33077.
Binhi V., 2016. Primary physical mechanism of the biological effects of weak magnetic fields. Biophysics, 61, 170-176.
Binhi V., 2019. Nonspecific magnetic biological effects: A model assuming the spinorbit coupling. J. Chemical Physics, 151, 204101.
Binhi V., Alipov Y.D., and Belyaev I.Y., 2001. Effect of static magnetic field on E. coli cells and individual rotations of ion-protein complexes. Bioelectromagnetics: J. Bioelectro-magnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 22, 79-86.<79::AID-BEM1009>3.0.CO;2-7.
Binhi V.N., and Prato F.S., 2017. A physical mechanism of magnetoreception: Extension and analysis. Bioelectromagnetics, 38, 41-52.
Binhi V.N., and Prato F.S., 2018. Rotations of macromolecules affect nonspecific biological responses to magnetic fields. Scientific Reports, 8, 13495.
Binhi V.N., and Rubin A.B., 2022. Theoretical concepts in magnetobiology after 40 years of research. Cells, 11, 274.
Binhi V.S., 2023. Statistical amplification of the effects of weak magnetic fields in cellular translation. Cells. 12, 724.
Bitonti M., Mazzuca S., Ting T., and Innocenti A., 2006. Magnetic field affects meristem activity and cell differentiation in Zea mays roots. Plant Biosystems, 140, 87-93.
Blümler P., 2021. Magnetic guiding with permanent magnets: concept, realization and applications to nanoparticles and cells. Cells, 10, 2708.
Bodewein L., Schmiedchen K., Dechent D., Stunder D., Graefrath D., Winter L., Kraus T., and Driessen S., 2019. Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300 Hz to 1 MHz). Environmental Res., 171, 247-259.
Buchachenko A., 2016. Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics, 37, 1-13.
Buchachenko A., and Kuznetsov D., 2021. Genes and cancer under magnetic control. Russian J. Physical Chemistry B, 15, 1-11.
Calabrò E., Condello S., Curro M., Ferlazzo N., Caccamo D., Magazu S., and Ientile R., 2013. Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells. Bioelectromagnetics, 34, 618-629.
Carvalho J., 2022. A computational model of organism development and carcinogenesis resulting from cells’ bioelectric properties and communication. Scientific Reports, 12, 9206.
Cecoro G., Bencivenga D., Annunziata M., Cennamo N., Della Ragione F., Formisano A., Piccirillo A., Stampone E., Volpe P.A., Zeni L., Borriello A., and Guida L., 2022. Effects of magnetic stimulation on dental implant osseointegration: A scoping review. Appl. Sci., 12, 4496.
Chanana P., Uosef A., Vaughn N., Suarez-Villagran M., Ghobrial R.M., Kloc M., and Wosik J., 2022. The effect of magnetic field gradient and gadolinium-based MRI contrast agent dotarem on mouse macrophages. Cells, 11, 757.
Chansoria P., Liu H., Christiansen M.G., Schürle-Finke S., and Zenobi-Wong M., 2023. Untethered: using remote magnetic fields for regenerative medicine. Trends Biotechnol., 41, 5.
Chen L., Chen C., Wang P., and Song T., 2017. Mechanisms of cellular effects directly induced by magnetic nanoparticles under magnetic fields. J. Nanomaterials, 2017, 13.
Chionna A., Dwikat M., Panzarini E., Tenuzzo B., Carla E., Verri T., Pagliara P., Abbro L., and Dini L., 2003. Cell shape and plasma membrane alterations after static magnetic fields exposure. European J. Histochemistry, 47, 299-308.
Chionna A., Tenuzzo B., Panzarini E., Dwikat M.B. Abbro L., and Dini L., 2005. Time dependent modifications of Hep G2 cells during exposure to static magnetic fields. Bioelectromagnetics: J. Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 26, 275-286.
Chiu K.H., Ou K.L., Lee S.Y., Lin C.T., Chang W.J., Chen C.C., and Huang H.M., 2007. Static magnetic fields promote osteoblast-like cells differentiation via increasing the membrane rigidity. Annals Biomedical Eng., 35, 1932-1939.
Coletti D., Teodori L., Albertini M.C., Rocchi M., Pristera A., Fini M., Molinaro M., and Adamo S., 2007. Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment. Cytometry Part A: The J. Inte. Soc. Analytical Cytology, 71, 846-856.
Costa S.S., Peres B.P., Machado B.R., Costa J.A.V., and Santos L.O., 2020. Increased lipid synthesis in the culture of Chlorella homosphaera with magnetic fields application. Bioresource Technology, 315, 123880.
Darvishi Y., Hassan-Beygi S.R., Massah J., Gancarz M., Bieszczad A., and Karami H., 2023. Determining the influence of a magnetic field on the vibration and fuel consumption of a heavy diesel engine. Sustainability, 15, 4088.
Darwish S.M., and Darwish I.M., 2022. Spectroscopic investigation of tau protein conformational changes by static magnetic field exposure. J. Physics Communications, 6, 075004.
De Nicola M., Cordisco S., Cerella C., Albertini M.C., D’alessio M., Accorsi A., Bergamaschi A., Magrini A., and Ghibelli L., 2006. Magnetic fields protect from apoptosis via redox alteration. Annals of the New York Academy of Sciences, 1090, 59-68.
Deamici K.M., Cardias B.B., Costa J.A.V., and Santos L.O., 2016. Static magnetic fields in culture of Chlorella fusca: Bioeffects on growth and biomass composition. Process Biochemistry, 51, 912-916.
Deamici K.M., Cuellar-Bermudez S.P., Muylaert K., Santos L.O., and Costa J.A.V. 2019a. Quantum yield alterations due to the static magnetic fields action on Arthrospira platensis SAG 21.99: Evaluation of photosystem activity. Bioresource Technol., 292, 121945.
Deamici K.M., Santos L.O., Costa J.A.V. 2019b. Use of static magnetic fields to increase CO2 biofixation by the microalga Chlorella fusca. Bioresource Technology, 276, 103-109.
Deamici K.M., Dziergowska K., Silva P.G.P., Michalak I., Santos L.O., Detyna J., Kataria S., Brestic M., Sarraf M., and Islam M., 2022. Microalgae cultivated under magnetic field ac-tion: insights of an environmentally sustainable approach. Sustainability, 14, 13291.
Deamici K.M., Santos L.O., and Costa J.A.V., 2018. Magnetic field action on outdoor and indoor cultures of Spirulina: Evaluation of growth, medium consumption and protein profile. Bioresource Technol., 249, 168-174.
Deamici K.M., Santos L.O., and Costa J.A.V., 2021. Magnetic field as promoter of growth in outdoor and indoor assays of Chlorella fusca. Bioprocess Biosystems Eng., 44, 1453-1460.
Descamps L., Audry M.C., Howard J., Mekkaoui S., Albin C., Barthelemy D., Payen L., Garcia J., Laurenceau E., Le Roy D., et al., 2021. Self-assembled permanent micromagnets in a polymer-based microfluidic device for magnetic cell sorting. Cells, 10, 1734.
Dhiman S.K., Wu F., and Galland P., 2023. Effects of weak static magnetic fields on the development of seedlings. of Arabidopsis thaliana. Protoplasma, 260, 767-786.
Dini L., Dwikat M., Panzarini E., Vergallo C., and Tenuzzo B., 2009. Morphofunctional study of 12-O-tetradecanoyl-13-phorbol acetate (TPA)-induced differentiation of U937 cells under exposure to a 6 mT static magnetic field. Bioelectromagnetics: J. Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 30, 352-364.
Dobrzański jr. B., and Szot B., 1997. Strengthof pea seed cover. Int. Agrophysics,11, 301-306.
Dong D., Yang J., Zhang G., Huyan T., and Shang P., 2019. 16 T high static magnetic field inhibits receptor activator of nuclear factor kappa-B ligand-induced osteoclast differentiation by regulating iron metabolism in Raw264. 7 cells. J. Tissue Eng. Regenerative Medicine, 13, 2181-2190.
Dziergowska K., Lewandowska S., Mech R., Pol M., Detyna J., and Michalak I., 2021. Soybean germination response to algae extract and a static magnetic field treatment. Applied Sci., 11, 8597.
El-Gaddar A., Frénéa-Robin M., Voyer D., Aka H., Haddour N., and Krähenbühl L., 2013. Assessment of 0.5 T static field exposure effect on yeast and HEK cells using electrorota-tion. Biophysical J., 104, 1805-1811.
Ercan I., Tombuloglu H., Alqahtani N., Alotaibi B., Bamhrez M., Alshumrani R., Ozcelik S., and Kayed T.S., 2022. Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence, and nutrient content of barley (Hordeum vulgare L.). Plant Physiology Biochemistry, 170, 36-48.
Escobar J.F., Vaca-González J.J., Guevara J.M., Vega J.F., Hata Y.A., and Garzón-Alvarado D.A., 2020. In vitro evaluation of the effect of stimulation with magnetic fields on chondrocytes. Bioelectromagnetics, 41, 41-51.
Espinosa-Diez C., Miguel V., Mennerich D., Kietzmann T., Sánchez-Pérez P., Cadenas S., and Lamas S., 2015. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biology, 6, 183-197.
Fassler J.S., Skuodas S., Weeks D.L., and Phillips B.T., 2021. Protein aggregation and disaggregation in cells and development. J. Molecular Biology, 433, 167215.
Fatima A., Kataria S., Prajapati R., Jain M., Agrawal A.K., Singh B., Kashyap Y., Tripathi D.K., Singh V.P., and Gadre R., 2021. Magnetopriming effects on arsenic stress-induced morphological and physiological variations in soybean involving synchrotron imaging. Physiologia Plantarum, 173, 88-99.
Feng C., Yu B., Song C., Wang J., Zhang L., Ji X., Wang Y., Fang Y., Liao Z., Wie M., et al., 2022. Static magnetic fields reduce oxidative stress to improve wound healing and alleviate diabetic complications. Cells, 11, 443.
Feng S.W., Lo Y.J., Chang W.J., Lin C.T., Lee S.Y., Abiko Y., and Huang H.M., 2010. Static magnetic field exposure promotes differentiation of osteoblastic cells grown on the surface of a poly-L-lactide substrate. Medical Biological Eng. Computing, 48, 793-798.
Feng T., Zhang M., Mujumdar A., and Zhang L., 2023. Effect of a magnetic field/electrostatic field on the quality attributes of green bell peppers during cool chain transportation. Sustainable Food Technol., 1, 582-589.
Font Y.S., Díaz Y.O., Cuypers A., Alemán E.I., and Vandamme D., 2023. The effect of magnetic field treatment on the cultivation of microalgae: An overview of involved mechanisms. J. Applied Phycology, 35, 1525-1536.
Galland P., and Pazur A., 2005. Magnetoreception in plants. J. Plant Res., 118, 371-389.
Guoping Z., Shaopeng C., Ye Z., Lingyan Z., Pei H., Lingzhi B., Jun W., Lei W., Lijun W., Yuejin W., et al., 2010. Effects of 13 T static magnetic fields (SMF) in the cell cycle distribution and cell viability in immortalized hamster cells and human primary fibroblasts cells. Plasma Science Technol., 12, 123.
Gurhan H., Bruzon R., Kandala S., Greenebaum B., and Barnes F., 2021. Effects induced by a weak static magnetic field of different intensities on HT-1080 fibrosarcoma cells. Bioelectromagnetics, 42, 212-223.
Hafeez M.B., Zahra N., Ahmad N., Shi Z., Raza A., Wang X., and Li J., 2023. Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields. A review. Plant Biology, 25, 8-23.
Hamdane D., Grosjean H., and Fontecave M., 2016. Flavin-dependent methylation of RNAs: complex chemistry for a simple modification. J. Molecular Biology, 428, 4867-4881.
Haneda T., Fujimura Y., and Iino M., 2006. Magnetic field exposure stiffens regenerating plant protoplast cell walls. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, European Bioelectromagnetics Association, 27, 98-104.
Harb A.M., Alnawateer B.M., and Abu-Aljarayesh I., 2021. Influence of static magnetic field seed treatments on the morphological and the biochemical changes in lentil seedlings (Lens culinaris Medik). Jordan J. Biological Sci., 14.
Hashimoto Y., Kawasumi M., and Saito M., 2007. Effect of static magnetic field on cell migration. Electrical Eng. Japan, 160, 46-52.
Hassanpour H., and Niknam V., 2020. Establishment and assessment of cell suspension cultures of Matricaria chamomilla as a possible source of apigenin under static magnetic field. Plant Cell, Tissue Organ Culture (PCTOC), 142, 583-593.
Hassanpour H., and Ghanbarzadeh M., 2023. An overview of static magnetic field in plants: physiological effects and antioxidant defense mechanisms. Iranian J. Plant Physiol., 13, 4459-4470.
Hogben H.J., Efimova O., Wagner-Rundell N., Timmel C.R., and Hore P., 2009. Possible involvement of superoxide and dioxygen with cryptochrome in avian magnetoreception: origin of Zeeman resonances observed by in vivo EPR spectroscopy. Chemical Physics Letters, 480, 118-122.
Hollenberg A.M., Huber A., Smith C.O. et al., 2021. Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair. Sci. Rep., 11, 19114.
Hore P., Ivanov K.L., and Wasielewski M.R., 2020. Spin chemistry. J. Chemical Physics, 152.
Hossain M.K., Drmosh Q.A., and Mohamedkhair A.K., 2021. Plasmonic pollen grain nanostructures: a three-dimensional surface-enhanced raman scattering (SERS)-active substrate. Chemistry-An Asian J., 16, 1807-1819.
Hsieh S.C., Tsao J.T., Lew W.Z., Chan Y.H., Lee L.W., Lin C.T., Huang Y.K., and Huang H.M., 2015. Static magnetic field attenuates lipopolysaccharide-induced inflammation in pulp cells by affecting cell membrane stability. Scientific World J., 9.
Huang H.M., Lee S.Y., Yao W.C., Lin C.T., and Yeh C.Y., 2006. Static magnetic fields upregulate osteoblast maturity by affecting local differentiation factors. Clinical Ortho-paedics Related Res., 447, 201-208.
Huo S., Chen X., Zhu F., Zhang W., Chen D., Jin N., Cobb K., Cheng Y., Wang L., and Ruan R., 2020. Magnetic field intervention on growth of the filamentous microalgae Tribonema sp. in starch wastewater for algal biomass production and nutrients removal: Influence of ambient temperature and operational strategy. Biores. Technol., 303, 122884.
Islam M., Vigani G., and Maffei M.E., 2020. The geomagnetic field (gmf) modulates nutrient status and lipid metabolism during arabidopsis thaliana plant development. Plants, 9, 1729.
Iwasaka M., 2019. Deformation of cellular components of bone forming cells when exposed to a magnetic field. AIP Advances, 9, 035327.
Javani Jouni F., Abdolmaleki P., and Movahedin M., 2013. Investigation on the effect of static magnetic field up to 15 mT on the viability and proliferation rate of rat bone marrow stem cells. In Vitro Cellular Develop. Biology-Animal, 49, 212-219.
Jin X., Chalmers J.J., and Zborowski M., 2012. Iron transport in cancer cell culture suspensions measured by cell magnetophoresis. Analytical Chemistry, 84, 4520-4526.
Jin Y., Guo W., Hu X., Liu M., Xu X., Hu F., Lan Y., Lv C., Fang Y., Liu M., et al., 2019. Static magnetic field regulates Arabidopsis root growth via auxin signaling. Scientific Reports, 9, 1-14.
Kagami M., and Urabe J., 2001. Phytoplankton growth rate as a function of cell size: an experimental test in Lake Biwa. Limnology, 2, 111-117.
Kaku M., Kamada H., Kawata T., Koseki H., Abedini S., Kojima S., Motokawa M., Fujita T., Ohtani J., Tsuka N., et al., 2010. Cryopreservation of periodontal ligament cells with magnetic field for tooth banking. Cryobiology, 61, 73-78.
Kamalipooya S., Soleimani H., Abdolmaleki P., Sabet A., Hajipour B., and Jouni F.J., 2016. The effects of static magnetic fields on viability and apoptosis in normal and cancerous cells. J. Iranian Clinical Research, 3, 86-90.
Karanam N.K., Ding L., Aroumougame A., and Story M.D., 2020. Tumor treating fields cause replication stress and interfere with DNA replication fork maintenance: implications for cancer therapy. Translational Res., 217, 33-46.
Kataria S., Baghel L., Jain M., and Guruprasad K., 2019. Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatalysis and Agricultural Biotechnology, 18, 101090.
Kim E.C., Leesungbok R., Lee S.W., Lee H.W., Park S.H., Mah S.J., and Ahn S.J., 2015. Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchy-mal stem cells. Bioelectromagnetics, 36, 267-276.
Kim E.C., Park J., Kwon I.K., Lee S.W., Park S.J., and Ahn S.J., 2017. Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells. J. Periodontal Implant Science, 47, 273-291.
Kim S., and Im W., 2010. Static magnetic fields inhibit proliferation and disperse subcellular localization of gamma complex protein3 in cultured C2C12 myoblast cells. Cell Biochemistry Biophysics, 57, 1-8.
Lahiri S., Wang P., Babbit P., McLeish M., Kenyon G., and Allen K.A., 2001. structure of Torpedo californica creatine kinase. Biochemistry, 41, 002400-37.
Law K., Bailly-Grandvaux M., Morace A., Sakata S., Matsuo K., Kojima S., Lee S., Vaisseau X., Arikawa Y., Yogo A., et al., 2016. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry. Applied Physics Letters, 108, 091104.
Lei H., Pan Y., Wu R., and Lv Y., 2020. Innate immune regulation under magnetic fields with possible mechanisms and therapeutic applications. Frontiers in Immunology, 2705.
Lemessa A., Popardowski E., Hebda T., and Jakubowski T., 2022. The effect of UV-C irradiation on the mechanical and physiological properties of potato tuber and different products. Appl. Sci., 12, 5907.
Letuta U.G., Berdinskiy V.L., Udagawa C., and Tanimoto Y., 2017. Enzymatic mechanisms of biological magnetic sensitivity. Bioelectromagnetics, 38, 511-521.
Levin M. 2020. The biophysics of regenerative repair suggests new perspectives on biological causation. BioEssays, 42, 1900146.
Levin M., 2012. Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients. Bioessays, 34, 205-217.
Levin M., and Stevenson C.G., 2012. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. Annual review Biomedical Eng., 14, 295-323.
Lew W.Z., Feng S.W., Lee S.Y., and Huang H.M., 2021. The review of bioeffects of static magnetic fields on the oral tissue-derived cells and its application in regenerative medicine. Cells, 10, 2662.
Lew W.Z., Huang Y.C., Huang K.Y., Lin C.T., Tsai M.T., and Huang H.M., 2018. Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism. J. Tissue Engineering Regenerative Medicine, 12, 19-29.
Li K., Xu J., Li P., and Fan Y., 2022. A review of magnetic ordered materials in biomedical field: Constructions, applications and prospects. Composites Part B: Engineering, 228, 109401.
Li Z.Y., Guo S.Y., Li L., and Cai M.Y., 2007. Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor. Bioresource Technol., 98, 700-705.
Lin C.Y., Wei P.L., Chang W.J., Huang Y.K., Feng S.W., Lin C.T., Lee S.Y., and Huang H.M., 2013. Slow freezing coupled static magnetic field exposure enhances cryopreservative efficiency – A study on human erythrocytes. PloS one, 8, e58988.
Lin S.L., Su Y.T., Feng S.W., Chang W.J., Fan K.H., and Huang H.M., 2019. Enhancement of natural killer cell cytotoxicity by using static magnetic field to increase their viability. Electromagnetic Biology and Medicine, 38, 131-142.
Luo X., Zhang H., Li Q., and Zhang J., 2020. Effects of static magnetic field on Chlorella vulgaris: Growth and extracellular polysaccharide (EPS) production. J. Applied Phycology, 32, 2819-2828.
Luo X., Zhang H., and Zhang J., 2021. The influence of a static magnetic field on a Chlorella vulgaris - Bacillus licheniformis consortium and its sewage treatment effect. J. Environmental Management, 295, 112969.
Luo Y., Ji X., Liu J., Li Z., Wang W., Chen W., Wang J., Liu Q., and Zhang X., 2016. Moderate intensity static magnetic fields affect mitotic spindles and increase the antitumor efficacy of 5-FU and Taxol. Bioelectrochemistry, 109, 31-40.
Lv H., Liu J., Zhen C., Wang Y., Wei Y., Ren W., and Shang P., 2021. Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials. Cell Proliferation, 54, e12982.
Manjua A.C., Cabral J.M., Portugal C.A., and Ferreira F.C., 2021. Magnetic stimulation of the angiogenic potential of mesenchymal stromal cells in vascular tissue engineering. Sci. Technol. Advanced Materials, 22, 461-480.
Marędziak M., Marycz K., Lewandowski D., Siudzinska A., and Smieszek A., 2015. Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs)-a new approach in veterinary regenerative medicine. In Vitro Cellular Developmental Biology Animal, 51, 230-240.
Marędziak M., Smieszek A., Tomaszewski K.A., Lewandowski D., and Marycz K., 2016. The effect of low static magnetic field on’ osteogenic and adipogenic differentiation potential of human adipose stromal/stem cells. J. Magnetism Magnetic Materials, 398, 235-245.
Martino C.F., Perea H., Hopfner U., Ferguson V.L., and Wintermantel E., 2010. Effects of weak static magnetic fields on endothelial cells. Bioelectromagnetics: J. Bioelectromag. Society, Society for Physical Regulation in Biology and Medicine, European Bioelectromagnetics Association, 31, 296-301.
Marycz K., Kornicka K., and Röcken M., 2018. Static magnetic field (SMF) as a regulator of stem cell fate - new perspectives in regenerative medicine arising from an underestimated tool. Stem Cell. Rev. Rep., 14(6), 785-792.
Mohammadi F., Ghanati F., Sharifi M., and Chashmi N.A., 2018. On the mechanism of the cell cycle control of suspension-cultured tobacco cells after exposure to static magnetic field. Plant Science, 277, 139-144.
Molo K., and Ordu E., 2021. Effect of moderate static magnetic field on human bone marrow mesenchymal stem cells: a preliminary study for regenerative medicine. Trakya University J. Natural Sciences, 22(1), 35-42.
Morris C.E., and Skalak T.C., 2007. Chronic static magnetic field exposure alters microvessel enlargement resulting from surgical intervention. J. Applied Physiology, 103, 629-636.
Mroczek-Zdyrska M., Tryniecki Ł., Kornarzyński K., Pietruszewski S., and Gagos M., 2021. Influence of magnetic field stimulation on the growth and biochemical parameters in Phaseolus vulgaris L. J. Microbiol., Biotechnol. Food Sciences, 548-551.
Nuccitelli S., Cerella C., Cordisco S., Albertini M.C., Accorsi A., De Nicola M., D’alessio M., Radogna F., Magrini A., Bergamaschi A., et al., 2006. Hyperpolarization of plasma membrane of tumor cells sensitive to antiapoptotic effects of magnetic fields. Annals of the New York Academy of Sciences, 1090, 217-225.
Pacini S., Gulisano M., Peruzzi B., Sgambati E., Gheri G., Bryk S.G., Vannucchi S., Polli G., and Ruggiero M., 2003. Effects of 0.2 T static magnetic field on human skin fibroblasts. Cancer Detection Prevention, 27, 327-332.
Pagliara P., Lanubile R., Dwikat M., Abbro L., and Dini L., 2005. Differentiation of monocytic U937 cells under static magnetic field exposure. European J. Histochemistry, 49, 75-86.
Pawełek A., Owusu S.A., Daniele Cecchetti D., Zielińska A., and Wyszkowska J., 2022. What evidence exists of crop plants response to exposure to static magnetic and electromagnetic fields? A systematic map protocol. Environ. Evidence, 11: 37.
Payez A., Ghanati F., Behmanesh M., Abdolmaleki P., Hajnorouzi A., and Rajabbeigi E., 2013. Increase of seed germination, growth and membrane integrity of wheat seedlings by exposure to static and a 10-KHz electromagnetic field. Electromagnetic Biology Medicine, 32, 417-429.
Pingping Z., Ruochun Y., Zhiyou C., Lifang W., and Zengliang Y., 2007. Genotoxic effects of superconducting static magnetic fields (SMFs) on wheat (Triticum aestivum) pollen mother cells (PMCs). Plasma Sci. Technol., 9, 241.
Poinapen D., Toppozini L., Dies H., Brown D.C., and Rheinstädter M.C., 2013. Static magnetic fields enhance lipid order in native plant plasma membrane. Soft Matter, 9, 6804-6813.
Pooam M., Arthaut L.D., Burdick D., Link J., Martino C.F., and Ahmad M., 2019. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark. Planta, 249, 319-332.
Prina-Mello A., Campbell V., and Coey J., 2005. Static magnetic field effects on cells. A possible road to cell differentiation. In Proc. NSTI Nanotechnology Conf. Trade Show-NSTI Nanotech 2005 Technical Proceedings, 96-99.
Qiao J., Zhang M., Fang Z., and Fu J., 2023. Effect of static magnetic field assisted freezing on the product quality of Korla fragrant pear. J. Food Process Eng., 46, e14404.
Qin S., Yin H., Yang C., Dou Y., Liu Z., Zhang P., Yu H., Huang Y., Feng J., Hao J., et al., 2016. A magnetic protein biocompass. Nature Materials, 15, 217-226.
Rekena A., Didrihsone E., and Vegere K., 2019. The role of magnetic field in the biopharmaceutical production: Current perspectives. Biotechnology Reports, 22, e00334.
Rekena A., Livkisa D., Kamolins E., Vanags J., and Loca D., 2021 Biopharmaceutical-type chi-nese hamster ovary cell cultivation under static magnetic field exposure: A study of genotoxic effect. Frontiers Bioengineering Biotechnol., 1129.
Rishabh R., Zadeh-Haghighi H., Salahub D., and Simon C., 2022. Radical pairs may explain reactive oxygen species-mediated effects of hypomagnetic field on neurogenesis. PLOS Computational Biology, 18, e1010198.
Rodgers C.T., 2009. Magnetic field effects in chemical systems. Pure Applied Chemistry, 81, 19-43.
Romeo S., Sannino A., Scarfì M.R., Massa R., D’Angelo R., and Zeni O., 2016. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field. Scientific Reports, 6, 1-10.
Rosen A.D., 2003. Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics: J. Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 24, 517-523.
Sadri M., Abdolmaleki P., Abrun S., Beiki B., and Samani F.S., 2017. Static magnetic field effect on cell alignment, growth, and differentiation in human cord-derived mesenchymal stem cells. Cellular Molecular Bioeng., 10, 249-262.
Sahebjamei H., Abdolmaleki P., and Ghanati F., 2007. Effects of magnetic field on the antioxidant enzyme activities of suspension-cultured tobacco cells. Bioelectromagnetics: J. Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 28, 42-47.
Saletnik B., Saletnik A., Słysz E., Zaguła G., Bajcar M., Puchalska-Sarna A., and Puchalski C., 2022a. The Static Magnetic Field Regulates the Structure, Biochemical Activity, and Gene Expression of Plants. Molecules, 27, 5823.
Saletnik B., Zaguła G., Saletnik A., Bajcar M., Słysz E., Puchalski C., 2022b. Effect of magnetic and electrical fields on yield, shelf life and quality of fruits. Appl. Sci., 12, 3183.
Santos L.O., Deamici K.M., Menestrino B.C., Garda-Buffon J., and Costa J.A.V., 2017. Magnetic treatment of microalgae for enhanced product formation. World J. Microbiol.Biotechnol., 33, 1-6.
Santos L.O., Silva P.G.P., Machado B.R., Sala L., and Deamici K.M., 2022. Update on the application of magnetic fields to microalgal cultures. World J. Microbiol. Biotechnol., 38, 211.
Sarraf M., Kataria S., Taimourya H., Santos L.O., Menegatti R.D., Jain M., Ihtisham M., and Liu S., 2020. Magnetic field (MF) applications in plants: An overview. Plants, 9, 1139.
Scandalios J.G., 2002. The rise of ROS. Trends Biochemical Sciences, 27, 483-486.
Sear R.P., 2019. Diffusiophoresis in cells: A general nonequilibrium, nonmotor mechanism for the metabolism-dependent transport of particles in cells. Physical Review Letters, 122, 128101.
Selim A.F.H., and El-Nady M.F., 2011. Physioanatomical responses of drought stressed tomato plants to magnetic field. Acta Astronautica, 69, 387-396.
Selim A.F.H., and Selim D.A., 2019. Physio-biochemical behaviour, water use efficiency and productivity of wheat plants exposed to magnetic field. J. Plant Production, 10, 185-191.
Selim D.A.F.H., Nassar R.M.A., Boghdady M.S., and Bonfill M., 2019. Physiological and anatomical studies of two wheat cultivars irrigated with magnetic water under drought stress conditions. Plant Physiology Biochemistry, 135, 480-488.
Shang G.M., Wu J.C., and Yuan Y.J., 2004. Improved cell growth and Taxol production of suspension-cultured Taxus chinensis var. mairei in alternating and direct current magnetic fields. Biotechnology Letters, 26, 875-878.
Shang W., Chen G., Li Y., Zhuo Y., Wang Y., Fang Z., Yu Y., Ren H., et al., 2019. Static magnetic field accelerates diabetic wound healing by facilitating resolution of inflammation. J. Diabetes Res., 5641271.
Shokrollahi S., Ghanati F., Sajedi R.H., and Sharifi M., 2018. Possible role of iron containing proteins in physiological responses of soybean to static magnetic field. J. Plant Physiology, 226, 163-171.
Sies H., Berndt C., and Jones D.P., 2017. Oxidative stress. Annual Review Biochemistry, 86, 715-748.
Small D.P., Hüner N.P., and Wan W., 2012. Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics, 33, 298-308.
Soumyanarayanan A., Reyren N., Fert A., and Panagopoulos C., 2016. Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces. Nature, 539, 509-517.
Stolfa S., Skorvanek M., Stolfa P., Rosocha J., Vasko G., and Sabo, J., 2007. Effects of static magnetic field and pulsed electromagnetic field on viability of human chondrocytes in vitro. Physiological Research, 56, S45.
Strahl H., and Hamoen L.W., 2010. Membrane potential is important for bacterial cell division. Proceedings of the National Academy of Sciences, 107, 12281-12286.
Sullivan K., Balin A.K., and Allen R.G., 2011. Effects of static magnetic fields on the growth of various types of human cells. Bioelectromagnetics, 32, 140-147.
Sundelacruz S., Levin M., and Kaplan D.L., 2009. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Reviews Reports, 5, 231-246.
Teng H.C., 2005. A Puzzle of the effect of magnetic field on biological cells. Life Sci. J., 2, 16-21.
Tenuzzo B., Chionna A., Panzarini E., Lanubile R., Tarantino P., Jeso B.D., Dwikat M., and Dini L., 2006. Biological effects of 6 mT static magnetic fields: a comparative study in dif-ferent cell types. Bioelectromagnetics: J. Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, European Bioelectromagnetics Association, 27, 560-577.
Tenuzzo B., Vergallo C., and Dini L., 2009. Effect of 6 mT static magnetic field on the bcl-2, bax, p53 and hsp70 expression in freshly isolated and in vitro aged human lymphocytes. Tissue Cell, 41, 169-179.
Teodori L., Albertini M.C., Uguccioni F., Falcieri E., Rocchi M.B., Battistelli M., Coluzza C., Piantanida G., Bergamaschi A., Magrini A., et al., 2006. Static magnetic fields affect cell size, shape, orientation, and membrane surface of human glioblastoma cells, as demonstrated by electron, optic, and atomic force microscopy. Cytometry Part A: J. Int. Society Analytical Cytology, 69, 75-85.
Teodori L., Grabarek J., Smolewski P., Ghibelli L., Bergamaschi A., De Nicola M., and Darzynkiewicz Z., 2002. Exposure of cells to static magnetic field accelerates loss of integrity of plasma membrane during apoptosis. Cytometry: J. Int. Soc. Analytical Cytology, 49, 113-118.
Tian X., Wang D., Zha M., Yang X., Ji X., Zhang L., and Zhang X., 2018. Magnetic field direction differentially impacts the growth of different cell types. Electromagnetic Biology Medicine, 37, 114-125.
Valiron O., Peris L., Rikken G., Schweitzer A., Saoudi Y., Rémy C., and Job D., 2005. Cellular disorders induced by high magnetic fields. J. Magnetic Resonance Imaging: Official J. Int. Society for Magnetic Resonance in Medicine, 22, 334-340.
Van Huizen A.V., Morton J.M., Kinsey L.J., Von Kannon D.G., Saad M.A., Birkholz T.R., Czajka J.M., Cyrus J., Barnes F.S., and Beane W.S., 2019. Weak magnetic fields alter stem cell-mediated growth. Science Advances, 5, eaau7201.
Vergallo C., and Dini L., 2018. Comparative analysis of biological effects induced on different cell types by magnetic fields with magnetic flux densities in the range of 1-60 mT and frequencies up to 50 Hz. Sustainability, 10, 2776.
Vergallo C., Piccoli C., Romano A., Panzarini E., Serra A., Manno D., and Dini L., 2013. Magnetostatic field system for uniform cell cultures exposure. PLoS One, 8, e72341.
Vitali T., Maffioli E., Tedeschi G., and Vanoni M.A., 2016. Properties and catalytic activities of MICAL1, the flavoenzyme involved in cytoskeleton dynamics, and modulation by its CH, LIM and C-terminal domains. Archives of biochemistry and biophysics, 593, 24-37.
Wang D., Wang Z., Zhang L., Li Z., Tian X., Fang J., Lu Q., and Zhang X., 2018. Cellular ATP levels are affected by moderate and strong static magnetic fields. Bioelectromagnetics, 39, 352-360.
Wang H.Y., Zeng X.B., Guo S.Y., and Li Z.T., 2008. Effects of magnetic field on the antioxidant defense system of recirculation-cultured Chlorella vulgaris. Bioelectromagnetics: J. Bioelectromagnetics Society, Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 29, 39-46.
Wang J., Xiang B., Deng J., Freed D.H., Arora R.C., and Tian G., 2016. Inhibition of viability, proliferation, cytokines secretion, surface antigen expression, and adipogenic and osteogenic differentiation of adipose-derived stem cells by seven-day exposure to 0.5 T static magnetic fields. Stem cells Int., 7168175 .
Wang Z., Hao F., Ding C., Yang Z., and Shang P., 2014. Effects of static magnetic field on cell biomechanical property and membrane ultrastructure. Bioelectromagnetics, 35, 251-261.
Waskaas M., 2021. On the origin of the magnetic concentration gradient force and its interaction mechanisms with mass transfer in paramagnetic electrolytes. Fluids, 6, 114.
Wong J.R., Lee K.J., Shu J.J., and Shao F., 2015. Magnetic fields facilitate DNA-mediated charge transport. Biochemistry, 54, 3392-3399.
Wosik J., Chen W., Qin K., Ghobrial R.M., Kubiak J.Z., and Kloc M., 2018. Magnetic field changes macrophage phenotype. Biophysical J, 114, 2001-2013.
Wu H., Li C., Masood M., Zhang Z., González-Almela E., Castells-Garcia A., Zou G., Xu X., Wang L., Zhao G., et al., 2022. Static magnetic fields regulate T-type calcium ion channels and mediate mesenchymal stem cells proliferation. Cells, 11, 2460.
Xu C., Fan Z., Chao Y.L., Du L., and Zhang F.Q., 2008. Magnetic fields of 10 and 120 mT change cell shape and structure of F-actins of periodontal ligament cells. Bioelectrochemistry, 72, 41-46.
Yang J., Zhang G., Li Q., Tang Q., Feng Y., Shang P., and Zeng Y., 2021. Effect of high static magnetic fields on biological activities and iron metabolism in MLO-Y4 Osteo-cyte-like cells. Cells, 10, 3519.
Yang M., and Brackenbury W.J., 2013. Membrane potential and cancer progression. Frontiers Physiology, 4, 185.
Yang X., Li Z., Polyakova T., Dejneka A., Zablotskii V., and Zhang X., 2020. Effect of static magnetic field on DNA synthesis: The interplay between DNA chirality and magnetic field left-right asymmetry. FASEB BioAdvances, 2, 254.
Yang X., Song C., Zhang L., Wang J., Yu X., Yu B., Zablotskii V., and Zhang X., 2021. An upward 9.4 T static magnetic field inhibits DNA synthesis and increases ROS-P53 to sup-press lung cancer growth. Translational Oncology, 14, 101103.
Yuan L.Q., Wang C., Lu D.F., Zhao X.D., Tan L.H., and Chen X., 2020. Induction of apoptosis and ferroptosis by a tumor suppressing magnetic field through ROS-mediated DNA damage. Aging (Albany NY), 12, 3662.
Zablotskii V., Dejneka A., Kubinová Š., Le-Roy D., Dumas-Bouchiat F., Givord D., Dempsey N.M., and Syková E., 2013. Life on magnets: stem cell networking on micromagnet arrays. PloS one, 8, e70416.
Zablotskii V., Lunov O., Novotna B., Churpita O., Trošan P., Holánˇ V., Sykova E., Dejneka A., and Kubinová Š., 2014a. Down-regulation of adipogenesis of mesenchymal stem cells by oscillating high-gradient magnetic fields and mechanical vibration. Applied Physics Letters, 105, 103702.
Zablotskii V., Syrovets T., Schmidt Z.W., Dejneka A., and Simmet T., 2014b. Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies. Biomaterials, 35, 3164-3171.
Zablotskii V., Polyakova T., and Dejneka A., 2018. Cells in the non-uniform magnetic world: how cells respond to high-gradient magnetic fields. BioEssays, 40, 1800017.
Zablotskii V., Polyakova T., and Dejneka A., 2021. Modulation of the cell membrane potential and intracellular protein transport by high magnetic fields. Bioelectromagnetics, 42, 27-36.
Zablotskii V., Polyakova T., and Dejneka A., 2022. Effects of high magnetic fields on the diffusion of biologically active molecules. Cells, 11, 81.
Zablotskii V., Lunov O., Kubinova S., Polyakova T., Sykova E., and Dejneka A., 2016a. Effects of high-gradient magnetic fields on living cell machinery. J. Physics D: Applied Physics, 49, 493003.
Zablotskii V., Polyakova T., Lunov O., and Dejneka A., 2016b. How a high-gradient magnetic field could affect cell life. Scientific Reports, 6, 37407.
Zadeh-Haghighi H., and Simon C., 2022. Magnetic field effects in biology from the perspective of the radical pair mechanism. J. Royal Society Interface, 19, 20220325.
Zhang G., Liu X., Liu Y., Zhang S., Yu T., Chai X., He J., Yin D., and Zhang C., 2023a. The effect of magnetic fields on tumor occurrence and progression: Recent advances. Progress Biophysics Molecular Biology, 179, 38-50.
Zhang B., Yuan X., Lv H., Che J., Wang S., and Shang P., 2023b. Biophysical mechanisms underlying the effects of static magnetic fields on biological systems. Progress Biophysics Molecular Biology, 177, 14-23.
Zhang K., Ge W., Luo S., Zhou Z., and Liu Y., 2023c. Static magnetic field promotes proliferation, migration, differentiation, and AKT activation of periodontal ligament stem cells. Cells Tissues Organs, 212, 317-326.
Zhang L., Hou Y., Li Z., Ji X., Wang Z., Wang H., Tian X., Yu F., Yang Z., Pi L., et al., 2017a. 27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells. Elife, 6, e22911.
Zhang L., Ji X., Yang X., and Zhang X., 2017b. Cell type-and density-dependent effect of 1 T static magnetic field on cell proliferation. Oncotarget, 8, 13126.
Zhang L., Wang J., Wang H., Wang W., Li Z., Liu J., Yang X., Ji X., Luo Y., Hu C., et al., 2016. Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation. Oncotarget, 7, 41527.
Zhang X., Yarema K., Xu A., Zhang X., Yarema K., and Xu A., 2017c. Impact of static magnetic fields (SMFs) on cells. Biological Effects Static Magnetic Fields, 81-131.
Zhao B., Yu T., Wang S., Che J., Zhou L., and Shang P., 2021. Static magnetic field (0.2-0.4 T) stimulates the self-renewal ability of osteosarcoma stem cells through autophagic degradation of ferritin. Bioelectromagnetics, 42, 371-383.
Zheng L., Zhang L., Chen L., Jiang J., Zhou X., Wang M., and Fan Y., 2018. Static magnetic field regulates proliferation, migration, differentiation, and YAP/TAZ activation of human dental pulp stem cells. J. Tissue Engineering Regenerative Medicine, 12, 2029-2040.
Zwang T.J., Tse E.C., Zhong D., and Barton J.K., 2018. A compass at weak magnetic fields using thymine dimer repair. ACS Central Science, 4, 405-412.
Journals System - logo
Scroll to top