Studies concerning the response of potatoes to impact
More details
Hide details
Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
Final revision date: 2022-03-08
Acceptance date: 2022-04-06
Publication date: 2022-05-13
Corresponding author
Zbigniew Stropek   

Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, Głęboka, 20-612, Lublin, Poland
Int. Agrophys. 2022, 36(2): 115-122
  • For potatoes of (160-190) g the bruise beginning was at impact velocity 1 m s-1.
  • The restitution coefficient was constant in the tested range of impact velocity.
  • The experiment confirmed the validity of the critical stress criterion.
  • Bruise beginning is properly described by maximum and permanent deformation.
  • Maximum stress reached the constant value of 0.9 MPa at velocities 1-1.75 m s-1.
The paper presents the research results of the response of “Ramos” potatoes under impact loading conditions. The parameters characterizing the impact such as: maximum stress, maximum force, impact time, maximum deformation, permanent deformation and restitution coefficient were determined. The extent of the damage was also assessed on the basis of the parameters describing the particular bruise such as: bruise depth and width. The impact parameters were related to the bruise size in order to determine the damage threshold for the potatoes under impact loading conditions and to show which parameters describe the bruise beginning to manifest itself. For the tested potato cultivar with a weight of 160-190 g the initiation of the bruise was found to occur at an impact velocity of 1 m s-1. This corresponded to a bruise threshold (drop height) of 50 mm. The restitution coefficient changed to an insignificant extent which amounted to 0.44-0.49 in the tested range of the impact velocity which proves that the energy losses during the potato impact are constant and independent of the impact velocity. The maximum stress increased with increasing impact velocity, reaching a constant value of 0.9 MPa for the highest impact velocities. The stabilization of the maximum stress indicates that the damage to the potato tissue was determined by exceeding the specified stress value.
The Authors declare they have no conflict of interest.
Bajema R. and Hyde G.M., 1998. Instrumented pendulum for impact characterization of whole fruit and vegetable specimens. Trans. ASAE, 41(5), 1399-1405. doi: 10.13031/2013.17274.
Bajema R., Hyde G.M., and Baritelle A.L., 1998. Temperature and strain rate effects on the dynamic failure properties of potato tuber tissue. Trans. ASAE, 41(3), 733-740. doi: 10.13031/2013.17201.
Baritelle A.L. and Hyde G.M., 2001. Commodity conditioning to reduce impact bruising. Postharvest Biol. Technol., 21, 331-339.
Baritelle A., Hyde G., Thornton R., and Bajema R., 2000. A classification system for impact-related defecwts in potato tubers. Am. J. Potato Res., 77, 143-148.
Bentini M., Caprara C., and Martelli R., 2006. Harvesting damage to potato tubers by analysis of impacts recorded with an instrumented sphere. Biosyst. Eng., 94(1), 75-85.
Brook R.C., 1996. Potato bruising: how and why emphasizing black spot bruise. Haslett, Michigan, Running Water Publishing.
Celik H.K., Cinnar R., Yilmaz D., Ulmeanu M-E., Rennie A.E.W., and Akinci I., 2019. Mechanical collision simulation of potato tubers. J. Food Process Eng., 42, e13078.
Desmet M., van Linden V., Hertog M.L.A.T.M., Verlinden B.E., De Baerdemaeker J., and Nicolai B.M., 2004. Instrumented sphere prediction of tomato stem-puncture injury. Postharvest Biol. Technol., 34, 81-92.
Dintwa E., Van Zeebroeck M., Ramon H., and Tijskens E., 2008. Finite element method of the dynamic collision of apple fruit. Postharvest Biol. Technol., 49, 260-276.
El-Emam M.A., Zhou L., Shi W., Han C., Bai L., and Agarwal R., 2021. Theories and applications of CFD-DEM coupling approach for granular flow: A review. Arch Computat. Methods Eng., 28(7), 4979-5020
Fluck R.C. and Ahmed E.M., 1973. Impact testing of fruits and vegetables. Trans. ASAE, 16(4), 660-666.
Fu H., He L., Ma S., Karkee M., Chen D., Zhang Q., and Wang S., 2017. ‘Jazz’ apple impact bruise responses to different cushioning materials. Trans. ASABE, 60(2), 327-336. doi: 10.13031/trans.11946.
Gancarz M., 2016. Correlation between cell size and blackspot of potato tuber parenchyma tissue after storage. Postharvest Biol. Technol., 117, 161-167.
Gancarz M., 2018. At harvest prediction of the susceptibility of potato varieties to blackspot after impact over long-term storage. Postharvest Biol. Technol., 142, 93-98.
Gao Y., Song C., Rao X., and Ying Y., 2018. Image processing-aided FEA for monitoring dynamic response of potato tubers to impact loading. Comput. Electron. Agric., 151, 21-30.
Geyer M.O., Praeger U., Konig C., Graf A., Truppel I., Schluter O., and Herold B., 2009. Measuring behavior of an acceleration measuring unit implanted in potatoes. Trans. ASABE, 52(4), 1267-1274. doi: 10.13031/2013.27770.
Horabik J., Beczek M., Mazur R., Parafiniuk P., Ryżak M., and Molenda M., 2017. Determination of the restitution coefficient of seeds and coefficient of visco-elastic Hertz contact models for DEM simulations. Biosyst. Eng., 161, 106-119.
Hughes J.C., 1980. Potatoes 1: Factors affecting susceptibility to damage. Span, 23, 65-67.
Hussein Z., Fawole O.A., and Opara U.O., 2020. Bruise damage of pomegranate during long-term cold storage: susceptibility to bruising and changes in textural properties of fruit. Int. J. Fruit Sci., 20(2), 211-230.
Jakubowski T., 2018. Use of UV-C radiation for reducing storage losses of potato tubers. Bangladesh J. Bot., 47(3) 533-537.
Kołodziej P., Gołacki K., and Boryga M., 2019. Impact characteristics of sugar beet root during postharvest storage. Int. Agrophys., 33, 355-361. doi: 10.31545/intagr/110810.
Komarnicki P., Stopa R., Kuta Ł., and Szyjewicz D., 2017. Determination of apple bruise resistance based on the surface pressure and contact area measurements under impact loads. Comput. Electron. Agric., 142, 155-164.
Komarnicki P., Stopa R., Szyjewicz D., and Młotek M., 2016. Evaluation of bruise resistance of pears to impact load. Postharvest Biol. Technol., 114, 36-44.
Kuyu C.G., Tola Y.B., and Abdi G.G., 2019. Study on post-harvest quantitative and qualitative losses of potato tubers from two different road access districts of Jimma zone, South West Ethiopia. Heliyon, 5, e02272.
Liu Z., Li Z., Yue T., Diels E., and Yang Y., 2020. Differences in the cell morphology and microfracture behaviour of tomato fruit (Solanum lycopersicum L.) tissues during ripening. Postharvest Biol. Technol., 164, 111182.
Mathew R. and Hyde G.M., 1997. Potato impact damage thresholds. Trans. ASAE, 40(3), 705-709. doi: 10.13031/2013.21290.
Nikara S., Ahmadi E., and Nia A.A., 2020. Finite element simulation of the micromechanical changes of the tissue and cells of potato response to impact during storage by scanning electron microscopy. Postharvest Biol. Technol., 164, 111153.
Noble R., 1985. The relationship between impact and internal bruising in potato tubers. J. Agric. Eng. Res., 32, 111-121. doi:10.1016/0021-8634(85)90071-X.
Opara U.L. and Pathare P.B., 2014. Bruise damage measurement and analysis of fresh horticultural produce – A review. Postharvest Biol. Technol., 91, 9-24.
Pang W., Studman C.J., and Ward G.T., 1992. Bruising damage in apple-to-apple impact. J. Agric. Eng. Res., 52, 229-240.
Pathare P.B. and Al-Dairi M., 2021. Bruise damage and quality changes in impact-bruise, stored tomatoes. Horticulturae, 7, 113.
Peters R., 1996. Damage of potato tubers, a review. Potato Res., 39, 479-484.
Pitt R.E., 1992. Viscoelastic properties of fruits and vegetables. In: Viscoelastic properties of food (Eds M.A. Rao, J.F. Steffe). Elsevier Applied Science, London, UK.
Roudot A.C., Duprat F., and Wenian C., 1991. Modelling the response of apples to loads. J. Agric. Eng. Res., 48, 249-259.
Schneider F., Part F., Goebel C., Langen N., Gerhards C., Kraus G.F., and Ritter G., 2019. A methodological approach for the on-site quantification of food losses in primary production: Austrian and German case studies using the example of potato harvest. Waste Manag., 86, 106-113.
Stopa R., Szyjewicz D., Komarnicki P., and Kuta Ł., 2018. Determining the resistance to mechanical damage of apples under impact loads. Postharvest Biol. Technol., 146, 79-89.
Stropek Z. and Gołacki K., 2015. A new method for measuring impact related bruises in fruits. Postharvest Biol. Technol., 110, 131-139.
Stropek Z. and Gołacki K., 2016a. Methodological aspects of determining apple mechanical properties during impact. Int. J. Food Prop., 19(6), 1325-1334.
Stropek Z. and Gołacki K., 2016b. Quantity assessment of plastic deformation energy under impact loading conditions of selected apple cultivars Postharvest Biol. Technol., 115, 9-17.
Stropek Z. and Gołacki K., 2018. Viscoelastic response of apple flesh in a wide range of mechanical loading rates. Int. Agrophys., 32, 335-340. doi: 10.1515/intag-2017-0023.
Stropek Z. and Gołacki K., 2019a. Impact characteristics of pears. Postharvest Biol. Technol., 147, 100-106.
Stropek Z. and Gołacki K., 2019b. Stress relaxation of apples at different velocities and temperatures. Trans. ASABE, 62(1), 115-121. doi: 10.13031/trans.12993.
Stropek Z. and Gołacki K., 2020. Bruise susceptibility and energy dissipation analysis in pears under impact loading conditions. Postharvest Biol. Technol., 163, 111120.
Studman C.J., Brown G.K., Timm E.J., Schulte N.L., and Vreede M.J., 1997. Bruising on blush and non-blush sides in apple-to-apple impacts. Trans. ASAE, 40(6), 1655-1663. doi: 10.13031/2013.21405.
Van Canneyt T., Tijskens E., Ramon H., Verschoore R., and Sonck B., 2003. Characterisation of potato-shaped instrumented device. Biosyst. Eng., 86(3), 275-285.
Van Canneyt T., Tijskens E., Ramon H., Verschoore R., and Sonck B., 2004. Development of predictive tissue discolouration model based on electronic potato impacts. Biosyst. Eng., 88(1), 81-93.
Willersinn C., Mack G., Mouron P., Keiser A., and Siegrist M., 2015. Quantity and quality of food losses along the Swiss potato supply chain: Stepwise investigation and the influence of quality standards on losses. Waste Manag., 46, 120-132.
Xie S., Wang C., and Deng W., 2020. Experimental study on collision acceleration and damage characteristics of potato. J. Food Process Eng., 43, e13457.
Zdunek A., Gancarz M., Cybulska J., Ranachowski Z., and Zgórska K., 2008. Turgor and temperature effect on fracture properties of potato tuber (Solanum tuberosum cv. Irga). Int. Agrophys., 22, 89-97.
Zulkifli N., Hashim N., Harith H.H., and Shukery M.F.M., 2020. Finite element modelling for fruit stress analysis – A review. Trends Food Sci. Technol., 97, 29-37.
Journals System - logo
Scroll to top