Foamed bioplastics: a review
More details
Hide details
Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
Department of Food Engineering, Mersin University, Çiftlikköy Kampüsü, 33343 Mersin, Turkey
Final revision date: 2021-12-22
Acceptance date: 2021-12-22
Publication date: 2021-12-31
Corresponding author
Maciej Combrzyński   

Zakład Inżynierii Procesowej, Katedra Techniki Cieplnej i Inżynierii Procesowej, Wydział Inżynierii Produkcji, Uniwersytet Przyrodniczy w Lublinie, Głęboka 31, 20-612, Lublin, Poland
Int. Agrophys. 2021, 35(4): 375-388
  • Foamed bioplastics can be widely used and play important functions in many areas of human life. Many of them can be processed by the extrusion-cooking. Researchers are focused on the ability to obtain new innovative biobased products with the best physical and functional qualities. They are the main factors limiting nowadays the commercialization of environmentally friendly foamed materials.
Based on a literature review, the development and importance of foamed bioplastics in the context of conventional materials has been discussed in the paper. Raw materials, technological aspects, types of products (including a new generation of bioplastics), their advantages and disadvantages as well as user expectations are presented. Despite considerable progress, especially in the formulation of new raw material compositions, there is still a need to continue research work on the application of different techniques in the production of biodegradable porous packaging materials. It still remains the current primary goal – to produce products with physical characteristics that are comparable with those of petroleum based plastic.
The Authors do not declare any conflict of interest.
Abe M.M., Branciforti M.C., Nallin Montagnolli R., Marin Morales M.A., Jacobus A.P., and Brienzo M., 2022. Production and assessment of the biodegradation and ecotoxicity of xylan- and starch-based bioplastics. Chemosphere, 287, 132290,
Abinader G., Lacoste C., Baillif M.L., Erre D., and Copinet A., 2015. Effect of the formulation of starch-based foam cushions on the morphology and mechanical properties. J. Cell. Plast., 51(1), 31-44,
Altskar A., Andersson R., Boldizar A., Koch K., Stading M., Rigdahl M., and Thunwall M., 2008. Some effects of processing on the molecular structure and morphology of thermoplastic starch. Carbohydr. Polym., 71(4), 591-597,
Andersen P.J., Kumar A., and Hodson S.K., 1999. Inorganically filled starch based fiber reinforced composite foam materials for food packaging. Mater. Res. Innov., 3(1), 2-8,
Andrady A.L. (Ed.), 2003. Plastics and the environment. Wiley-Interscience: Hoboken, N.J,
Arif S., Burgess G., Narayan R., and Harte B., 2007. Evaluation of a biodegradable foam for protective packaging applications. Packag. Technol. Sci., 20(6), 413-419,
Asadi J., Korojy B., Hosseini S.A., and Alishahi M., 2021. Effect of cell structure on mechanical and bio-corrosion behavior of biodegradable Mg-Zn-Ca foam. Mater. Today Commun., 28, 102715,
Ashby M.F., 2006. The properties of foams and lattices. Phil. Trans. R. Soc. A., 364(1838), 15-30,
Atala A. and Mooney D.J. (Eds), 1997. Synthetic biodegradable polymer scaffolds. Tissue engineering. Birkhäuser: Boston,
Atiwesh G., Mikhael A., Parrish C.C., Banoub J., and Le T.-A.T., 2021. Environmental impact of bioplastic use: A review. Heliyon, 7(9), e07918,
Averous L., Moro L., Dole P., and Fringant C., 2000. Properties of thermoplastic blends: starch-polycaprolactone. Polymer, 41(11), 4157-4167,
Averous L. and Boquillon N., 2004. Biocomposites based on plasticized starch: Thermal and mechanical behaviours. Carbohydr. Polym., 56(2), 111-122,
Bae S.O. and Lim S.-T., 1998. Physical properties of extruded strands of hydroxypropylated normal and high-amylose corn starch. Cereal Chem. J., 75(4), 449-454,
Banhart J. and Baumeister J., 1998. Production methods for metallic foams. MRS Proc., 521, 121,
Barmouz M. and Behravesh A.H., 2017. Statistical and experimental investigation on low density microcellular foaming of PLA-TPU/cellulose nano-fiber bio-nanocomposites. Polymer Testing, 61, 300-313,
Bastioli C. and Rapra Technology Limited (Eds), 2005. Handbook of biodegradable polymers. Rapra Technology: Shrewsbury.
Baudron V., Gurikov P., Smirnova I., and Whitehouse S., 2019. Porous starch materials via supercritical- and freeze-drying. Gels, 5(1), 12,
Bergel B.F., Araujo L.L., and Santana R.M.C., 2021. Effects of the addition of cotton fibers and cotton microfibers on the structure and mechanical properties of starch foams made from potato starch. Carbohydr. Polym. Technol. App., 2, 100167,
Bergel B.F., Dias Osorio S., da Luz L.M., and Santana R.M.C., 2018. Effects of hydrophobized starches on thermoplastic starch foams made from potato starch. Carbohydr. Polym., 200, 106-114,
Bergel B.F., Leite Araujo L., dos Santos da Silva A.L., and Campomanes Santana R.M., 2020. Effects of silylated starch structure on hydrophobization and mechanical properties of thermoplastic starch foams made from potato starch. Carbohydr. Polym., 241, 116274,
Bhatnagar S. and Hanna M., 1996. Starch-based plastic foams from various starch sources. Cereal Chem., 73(5), 601-604.
Bhatnagar S. and Hanna M.A., 1995a. Physical, mechanical, and thermal properties of starch-based plastic foams. Trans. ASAE, 38(2), 567-571,
Bhatnagar S. and Hanna M.A., 1995b. Properties of extruded starch-based plastic foam. Ind. Crops. Prod., 4(2), 71-77,
Bonin M., 2010. An investigation into the properties of starch-based foams. School of Engineering & Design Brunel University, U.K.
Borchardt J.K., 2004. Porous structures for tissue engineering. Mater. Today, 7(12), 26,
Brodin M., Vallejos M., Opedal M.T., Area M.C., and Chinga-Carrasco G., 2017. Lignocellulosics as sustainable resources for production of bioplastics - A review. J. Clean. Prod., 162, 646-664,
Bruscato C., Malvessi E., Brandalise R.N., and Camassola M., 2019. High performance of macrofungi in the production of mycelium-based biofoams using sawdust - Sustainable technology for waste reduction. J. Clean. Prod., 234, 225-232,
Cha J.Y., Chung D.S., and Seib P.A., 1999. Effects of extrusion temperature and moisture content on mechanical properties of starch-based foams. Trans. ASAE, 42(6), 1765-1770,
Cha J.Y., Chung D.S., Seib P.A., Flores R.A., and Hanna M.A., 2001. Physical properties of starch-based foams as affected by extrusion temperature and moisture content. Ind. Crops. Prod., 14(1), 23-30,
Chaireh S., Ngasatool P., and Kaewtatip K., 2020. Novel composite foam made from starch and water hyacinth with beeswax coating for food packaging applications. Int. J. Biol. Macromol., 165, 1382-1391,
Chanvrier H., Appelqvist I.A.M., Bird A.R., Gilbert E., Htoon A., Li Z., Lillford P.J., Lopez-Rubio A., Morell M.K., and Topping D.L., 2007. Processing of novel elevated amylose wheats: Functional properties and starch digestibility of extruded products. J. Agric. Food Chem., 55(25), 10248-10257,
Chaudhary A.L., Torley P., Halley P., McCaffery N., and Chaudhary D., 2009. Amylose content and chemical modification effects on thermoplastic starch from maize – Processing and characterisation using conventional polymer equipment. Carbohydr. Polym., 78, 917-925,
Chauvet M., Sauceau M., Baillon F., and Fages J., 2021. Blending and foaming thermoplastic starch with poly (lactic acid) by CO2‐aided hot melt extrusion. J. Appl. Polym. Sci., 138(14), 50150,
Chen J., Wang Y., Liu J., and Xu X., 2020. Preparation, characterization, physicochemical property and potential application of porous starch: A review. Int. J. Biol. Macromol., 148, 1169-1181,
Chen Y., Zhang Z.Y., Ishikawa Y., and Maekawa T., 2002. Mechanical properties and water resistance of an acetylated starch-based plastic. Trans. ASAE, 45(4), 1051,
Chinnaswamy R. and Bhattacharya K.R., 1984. Relationship between amylose content and expansion characteristics of parboiled rice. J. Cereal Sci., 2(4), 273-279,
Chinnaswamy R. and Hanna M. A., 1988. Relationship between amylose content and extrusion-expansion properties of cornstarches. Cereal Chem., 65, 138-143.
Chocyk D., Gładyszewska B., Ciupak A., Oniszczuk T., Mościcki L., and Rejak A., 2015. Influence of water addition on mechanical properties of thermoplastic starch foils. Int. Agrophys, 29(3), 267-273,
Chong J.W.R., Khoo K.S., Yew G.Y., Leong W.H., Lim J.W., Lam M.K., Ho Y.-C., Ng H.S., Munawaroh H.S.H., and Show P.L., 2021. Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: A review. Biores. Technol., 342, 125947,
Cinelli P., Chiellini E., Lawton J.W., and Imam S.H., 2006. Foamed articles based on potato starch, corn fibers and poly(vinyl alcohol). Polym. Degrad. Stab., 91(5), 1147-1155,
Cruz-Tirado J.P., Tapia-Blácido D.R., and Siche R., 2017. Influence of proportion and size of sugarcane bagasse fiber on the properties of sweet potato starch foams. IOP Conf. Ser.: Mater. Sci. Eng. 225 012180,
Cucina M., de Nisi P., Tambone F., and Adani F., 2021. The role of waste management in reducing bioplastics' leakage into the environment: A review. Bioresour. Technol., 337, 125459,
Cui C.-H., Yan D.-X., Pang H., Jia L.-C., Xu X., Yang S., Xu J.-Z., and Li Z.-M., 2017. A high heat-resistance bioplastic foam with efficient electromagnetic interference shielding. Chem. Eng. J., 323, 29-36,
Cunningham R.L., Carr M.E., and Bagley E.B., 1991. Polyurethane foams extended with corn flour. Cereal Chem., 68, 258-261.
De Graaf R.A. and Janssen L.P.B.M., 2000. The production of a new partially biodegradable starch plastic by reactive extrusion. Polym. Eng. Sci., 40(9), 2086-2094,
Doi Y. and Fukuda K., 1994. Biodegradable plastics and polymers: Proc. 3rd Int. Scientific Workshop On Biodegradable Plastics And Polymers, Osaka, Japan, November 9-11, 1993. Elsevier Science.
Engel J.B., Ambrosi A., and Tessaro I.C., 2019. Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydr. Polym., 225, 115234,
Engel J.B., Luchese C.L., and Tessaro I.C., 2021. How are the properties of biocomposite foams influenced by the substitution of cassava starch for its residual sources? Food Hydrocoll., 118, 106790,
European Bioplastics, 2021a. Frequently asked questions on bioplastics, https://www.european-bioplasti....
European Bioplastics, 2021b. Summary bioplastic market update 2020, https://www.european-bioplasti....
Fang Q. and Hanna M.A., 2000. Functional properties of polylactic acid starch-based loose-fill packaging foams. Cereal Chem. J., 77(6), 779-783,
Filli K., Sjöqvist M., Öhgren C., Stading M., and Rigdahl M., 2011. Development and characterization of extruded biodegradable foams based on zein and pearl millet flour. Annu. trans. Nord. Rheol. Soc., 19, 1-7.
Finkenstadt V.L., Felker F.C., Fanta G.F., Kenar J.A., Selling G.W., Hornback K.J., and Fisk D.L., 2016. Extruded foams prepared from high amylose starch with sodium stearate to form amylose inclusion complexes. J. Appl. Polym. Sci., 133, 43251,
Follain N., Joly C., Dole P., Roge B., and Mathlouthi M., 2006. Quaternary starch based blends: Influence of a fourth component addition to the starch/water/glycerol system. Carbohydr. Polym, 63(3), 400-407,
Gamarano D. de S., Pereira I.M., da Silva M.C., Mottin A.C., and Ayres E., 2020. Crystal structure transformations in extruded starch plasticized with glycerol and urea. Polym. Bull., 77(9), 4971-4992,
Ganjyal G.M., Weber R., and Hanna M.A., 2007. Laboratory composting of extruded starch acetate and poly lactic acid blended foams. Bioresour. Technol., 98(16), 3176-3179,
Gáspár M., Benkő Zs., Dogossy G., Réczey K., and Czigány T., 2005. Reducing water absorption in compostable starch-based plastics. Polym. Degrad. Stab., 90(3), 563-569,
Gendron R. (Ed.), 2004. Thermoplastic foam processing: Principles and development. CRC Press,
Georges A., Lacoste C., and Damien E., 2018. Effect of formulation and process on the extrudability of starch-based foam cushions. Ind. Crops. Prod., 115, 306-314,
Geramipour T. and Oveisi H., 2017. Effects of foaming parameters on microstructure and compressive properties of aluminum foams produced by powder metallurgy method. Trans. Nonferrous Met. Soc. China, 27(7), 1569-1579,
Gibson L.J. and Ashby M.F., 2001. Cellular solids: structure and properties. Cambridge solid state science series. Cambridge Univ. Press: Cambridge.
Glenn G. and Irving D., 2005. Starch-based microcellular foams. Cereal Chem., 72(2), 155-161.
Glenn G.M. and Orts W.J., 2001. Properties of starch-based foam formed by compression/explosion processing. Ind. Crops. Prod., 13(2), 135-143,
Guan J., Eskridge K.M., and Hanna M.A., 2005. Acetylated starch-polylactic acid loose-fill packaging materials. Ind. Crops. Prod., 22(2), 109-123,
Guan J., Fang Q., and Hanna M.A., 2004. Selected functional properties of extruded starch acetate and natural fibers foams. Cereal Chem. J., 81(2), 199-206,
Guan J. and Hanna M.A., 2004. Functional properties of extruded foam composites of starch acetate and corn cob fiber. Ind. Crops. Prod., 19(3), 255-269,
Guan J. and Hanna M.A., 2005. Selected morphological and functional properties of extruded acetylated starch-polylactic acid foams. Ind. Eng. Chem. Res., 44(9), 3106-3115,
Gurusamy Thangavelu S.A., Mukherjee M., Layana K., Dinesh Kumar C., Sulthana Y.R., Rohith Kumar R., Ananthan A., Muthulakshmi V., and Mandal A.B., 2020. Biodegradable polyurethanes foam and foam fullerenes nanocomposite strips by one-shot moulding: Physicochemical and mechanical properties. Mater. Sci. Semicond. Process., 112, 105018,
Guy R.C.E. (Ed.), 2001. Extrusion cooking: technologies and applications. Woodhead publishing in food science and technology. CRC Press; Woodhead: Boca Raton, Cambridge.
Hao L. and Chang-yu H., 2008. Research progress in structure-properties relationships of closed cell polymer foams. Chinese Polym. Bull.
Hidalgo-Crespo J., Jervis F.X., Moreira C.M., Soto M., and Amaya J.L., 2020. Introduction of the circular economy to expanded polystyrene household waste: A case study from an Ecuadorian plastic manufacturer. Procedia CIRP, 90, 49-54,
Ho B.T., Roberts T.K., and Lucas S., 2018. An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach. Crit. Rev. Biotechnol., 38(2), 308-320,
Hutchinson R.J., Siodlak G.D.E., and Smith A.C., 1987. Influence of processing variables on the mechanical properties of extruded maize. J. Mater Sci., 22(11), 3956-3962,
Jalalian M., Jiang Q., Coulon A., Storb M., Woodward R., and Bismarck A., 2019. Mechanically whipped phenolic froths as versatile templates for manufacturing phenolic and carbon foams. Mater. Des., 168, 107658,
Jiang T., Duan Q., Zhu J., Liu H., and Yu L., 2020. Starch-based biodegradable materials: Challenges and opportunities. Adv. Industr. Engin. Polymer Res., 3(1), 8-18,
Jin F.-L., Zhao M., Park M., and Park S.-J., 2019. Recent trends of foaming in polymer processing: a Review. Polymers, 11(6), 953,
Kahvand F. and Fasihi M., 2020. Microstructure and physical properties of thermoplastic corn starch foams as influenced by polyvinyl alcohol and plasticizer contents. Int. J. Biol. Macromol., 157, 359-367,
Kaisangsri N., Kerdchoechuen O., and Laohakunjit N., 2012. Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Ind. Crops. Prod., 37(1), 542-546,
Kaisangsri N., Kerdchoechuen O., and Laohakunjit N., 2014. Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydr. Polym, 110, 70-77,
Kaisangsri N., Kowalski R.J., Kerdchoechuen O., Laohakunjit N., and Ganjyal G.M., 2019. Cellulose fiber enhances the physical characteristics of extruded biodegradable cassava starch foams. Ind. Crops. Prod., 142, 111810,
Kaza S., Yao L.C., Bhada-Tata P., and Van Woerden F., 2018. What a waste 2.0: A global snapshot of solid waste management to 2050,
Kennedy J.F. and Knill C.J., 1995. Biodegradable plastics and polymers. (Studies in Polymer Science, 12), (Eds Y. Doi and K. Fukuda). Elsevier Science, Amsterdam, 1994. Polym. Int., 36(3), 299-299,
Konovalenko Ig.S., Toktohoev Ch.O., Konovalenko Iv.S., Smolin A.Yu., and Psakhie S.G., 2014. Study of the mechanical properties of ceramic composites with different volume of plastic filler. Procedia Materials Science, 3, 942-947,
Kupryaniuk K., Oniszczuk T., Combrzyński M., Czekała W., and Matwijczuk A., 2020. The influence of corn straw extrusion pretreatment parameters on methane fermentation performance. Materials, 13(13), 3003,
Lacourse N.L. and Altieri P., 1989. Biodegradable packaging material and the method of preparation thereof. US Patent 4863655.
Lacourse N.L. and Altieri P., 1991. Biodegradable shaped products and the method of preparation thereof. US Patent 5043196.
Lawton J.W., Shogren R.L., and Tiefenbacher K.F., 2004. Aspen fiber addition improves the mechanical properties of baked cornstarch foams. Ind. Crops. Prod., 19(1), 41-48,
Lee S.-T. and Scholz D.P.K. (Eds), 2009. Polymeric foams: technology and developments in regulation, process, and products. Polymeric foams. CRC Press: Boca Raton,
Lee S.Y., Eskridge K.M., Koh W.Y., and Hanna M.A., 2009. Evaluation of ingredient effects on extruded starch-based foams using a supersaturated split-plot design. Ind. Crops. Prod., 29(2-3), 427-436,
Lehmhus D., Busse M., Herrmann A.S., and Kayvantash K. (Eds), 2013. Structural materials and processes in transportation. First edition ed. Wiley-VCH: Weinheim, Germany,
Li H., Mahmood N., Ma Z., Zhu M., Wang J., Zheng J., Yuan Z., Wei Q., and Xu C. (Chunbao), 2017. Preparation and characterization of bio-polyol and bio-based flexible polyurethane foams from fast pyrolysis of wheat straw. Ind. Crops. Prod., 103, 64-72,
Li P., Zhu X., Kong M., Lv Y., Huang Y., Yang Q., and Li G., 2021. Fully biodegradable polylactide foams with ultrahigh expansion ratio and heat resistance for green packaging. Int. J. Biol. Macromol., 183, 222-234,
Liu P., Chen G.-F., and Liu P., 2014. Porous materials: processing and applications. BH, Butterworh-Heinemann/Elsevier: Amsterdam.
Liu P.S., 2010. Mechanical relation for porous metal foams under complex loads of triaxial tension and compression. Mater. Des., 31(4), 2264-2269,
Lui W.-B. and Peng J., 2005. Physical, mechanical, biodegradable properties and energy absorption behavior of corn grit-polyvinyl alcohol cushioning extrudates. J. Food Engin., 71(1), 73-84,
Machado C.M., Benelli P., and Tessaro I.C., 2020a. Effect of acetylated starch on the development of peanut skin-cassava starch foams. Int. J. Biol. Macromol., 165, 1706-1716,
Machado C.M., Benelli P., and Tessaro I.C., 2020b. Study of interactions between cassava starch and peanut skin on biodegradable foams. Int. J. Biol. Macromol., 147, 1343-1353,
Marcovich N.E., Kurańska M., Prociak A., Malewska E., and Kulpa K., 2017. Open cell semi-rigid polyurethane foams synthesized using palm oil-based bio-polyol. Ind. Crops. Prod., 102, 88-96,
Mariam I., Cho K.Y., and Rizvi S.S.H., 2008. Thermal properties of starch-based biodegradable foams produced using supercritical fluid extrusion (SCFX). Int. J. Food Propert., 11(2), 415-426,
Masli M.D.P., Gu B., Rasco B.A., and Ganjyal G.M., 2018. Fiber‐rich food processing byproducts enhance the expansion of cornstarch extrudates. J. Food Sci., 83(10), 2500-2510,
Miladinov V.D. and Hanna M.A., 2001. Temperatures and ethanol effects on the properties of extruded modified starch. Ind. Crops. Prod., 13(1), 21-28,
Mitrus M., 2006. Microstructure of thermoplastic starch polymers. Int. Agrophys., 20(1), 31-35.
Mitrus M., Combrzyński M., Kupryaniuk K., Wójtowicz A., Oniszczuk T., Kręcisz M., Matysiak A., Smurzyńska A., and Mościcki L., 2016. A study of the solubility of biodegradable foams of thermoplastic starch. J. Ecol. Eng., 17(4), 184-189,
Mitrus M. and Mościcki L., 2014. Extrusion-cooking of starch protective loose-fill foams. Chem. Engin. Res. Design, 92(4), 778-783,
Mittal V. (Ed.), 2013. Polymer nanocomposite foams. CRC Press, Taylor & Francis Group, LLC, Boca Raton, USA.
Nabar Y. and Narayan R., 2006. Analysis of the dynamic behavior of a starch foam extrusion process. J. Appl. Polym. Sci., 101(6), 3983-3995,
Nabar Y., Narayan R., and Schindler M., 2006a. Twin-screw extrusion production and characterization of starch foam products for use in cushioning and insulation applications. Polym. Eng. Sci., 46(4), 438-451,
Nabar Y.U., Draybuck D., and Narayan R., 2006b. Physicomechanical and hydrophobic properties of starch foams extruded with different biodegradable polymers. J. Appl. Polym. Sci., 102(1), 58-68,
National Institute of Industrial Research (India), 2006. Complete book on biodegradable plastics and polymers: recent development, properties, analysis, materials & processes. Asia Pacific Business: Delhi, India.
Niaounakis M., 2015. Biopolymers: processing and products. PDL Handbook Series. Elsevier/WA, William Andrew is an imprint of Elsevier: Amsterdam ; Boston.
Neumann P.E. and Seib P.A., 1993. Starch-based biodegradable packaging filler and method of preparing same. US Patent 5165383.
Oniszczuk T., Wójtowicz A., Mościcki L., Mitrus M., Kupryaniuk K., Kusz A., and Bartnik G., 2016. Effect of natural fibres on the mechanical properties of thermoplastic starch. Int. Agrophys., 30(2), 211-218,
Oniszczuk T., Wójtowicz A., Oniszczuk A., Mitrus M., Combrzyński M., Kręcisz M., and Mościcki L., 2015. Effect of processing conditions on selected properties of starch-based biopolymers. Agriculture and Agricultural Science Procedia, 7, 192-197,
Pachori S., Sarkar A., Dutta A., Palanivelu J., and Chidambaram R., 2019. Synthesis methods of starch-based polymer foams and its comparison with conventional polymer foams for food packaging applications. In: Polymers for agri-food applications (Ed. T.J. Gutiérrez). Springer International Publishing: Cham, 317-338,
Park S.K. and Hettiarachchy N.S., 1999. Physical and mechanical properties of soy protein-based plastic foams. J. Am. Oil Chem. Soc., 76(10), 1201-1205,
Parra D.F., Carr L.G., Ponce P., Tadini C.C., and Lugão A.B., 2006. Biodegradable foams made of cassava starch and fibers: influence in the mechanical properties. In: International Symposium on Future of Food Engineering. CIGR.
Phromsopha T. and Baimark Y., 2021. Study on phase compatibility and water resistance of thermoplastic starch foams coated with flexible poly(L-lactide)-b-polyethylene glycol-b-poly(L-lactide) bioplastics. Mater. Today Commun., 26, 101844,
Prapruddivongs C. and Wongpreedee T., 2020. Use of eggshell powder as a potential hydrolytic retardant for citric acid-filled thermoplastic starch. Powder Technol., 370, 259-267,
Pushpadass H.A., Babu G.S., Weber R.W., and Hanna M.A., 2008. Extrusion of starch-based loose-fill packaging foams: effects of temperature, moisture and talc on physical properties. Packag. Technol. Sci., 21(3), 171-183,
Rajak D.K. and Gupta M., 2020. Introduction to metallic foams. In: An insight into metal based foams, advanced structured materials. Springer Singapore: Singapore, 1-20,
Razza F., Degli Innocenti F., Dobon A., Aliaga C., Sanchez C., and Hortal M., 2015. Environmental profile of a bio-based and biodegradable foamed packaging prototype in comparison with the current benchmark. J. Clean. Prod., 102, 493-500,
Rosato D.V., Rosato D.V., and Rosato M.V., 2004. Plastic product material and process selection handbook. Elsevier: Kidlington, Oxford, UK ; New York, USA,
Salgado P.R., Schmidt V.C., Molina Ortiz S.E., Mauri A.N., and Laurindo J.B., 2008. Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process. J. Food Engin., 85(3), 435-443,
Sivertsen K., 2007. Polymer foams. Polymer physics, Spring, Massachusetts Institute of Technology, USA.
Shey J., Imam S.H., Glenn G.M., and Orts W.J., 2006. Properties of baked starch foam with natural rubber latex. Ind. Crops. Prod., 24(1), 34-40,
Shogren R.L., Lawton J.W., and Tiefenbacher K.F., 2002. Baked starch foams: starch modifications and additives improve process parameters, structure and properties. Ind. Crops. Prod., 16(1), 69-79,
Song W., Barber K., and Lee K.-Y., 2017. Heat-induced bubble expansion as a route to increase the porosity of foam-templated bio-based macroporous polymers. Polymer, 118, 97-106,
Soykeabkaew N., Supaphol P., and Rujiravanit R., 2004. Preparation and characterization of jute- and flax-reinforced starch-based composite foams. Carbohydr. Polym, 58(1), 53-63,
Srisuwan Y. and Baimark Y., 2021. Improvement of water resistance of thermoplastic starch foams by dip-coating with biodegradable polylactide-b-polyethylene glycol-b-polylactide copolymer and its blend with poly(D-lactide). Prog. Org. Coat, 151, 106074,
Steinbüchel A. (Ed.), 2005. Biopolymers Online: Biology • Chemistry • Biotechnology • Applications. 1st ed. Wiley,
Stevens E.S., 2002. Why do composters care? How green are green plastics? Biocycle, 43, 42-45,
Su B.-L., 2012. Hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science. Wiley-VCH: Weinheim,
Szpiłyk M., Lubczak R., and Lubczak J., 2021. The biodegradable cellulose-derived polyol and polyurethane foam. Polymer Testing, 100, 107250,
Tatarka P. and Cunningham R., 1998. Properties of protective loose-fill foams. J. Appl. Polymer Sci., 67, 1157-1176,<1157::AID-APP1>3.0.CO;2-F.
Todd C.S. and Kuznetsova V., 2011. Closed-cell foam skin thickness measurement using a scanning electron microscope. Microsc. Microanal., 17(5), 772-778,
Van Tuil R., Van Heemst J., and Schennink G., 2001. Potato starch based resilient thermoplastic foams. In: Biorelated polymers (Eds E. Chiellini, H. Gil, G. Braunegg, J. Buchert, P. Gatenholm and M. van der Zee). Springer US: Boston, MA, 3-17,
Wang L., Ganjyal G.M., Jones D.D., Weller C.L., and Hanna M.A., 2005. Modeling of bubble growth dynamics and nonisothermal expansion in starch-based foams during extrusion. Adv. Polym. Technol., 24(1), 29-45,
Wang L., Lee R.E., Wang G., Chu R.K.M., Zhao J., and Park C.B., 2017. Use of stereocomplex crystallites for fully-biobased microcellular low-density poly(lactic acid) foams for green packaging. Chem. Engin. J., 327, 1151-1162, ttps://
Wang X., Huang L., Zhang C., Deng Y., Xie P., Liu L., and Cheng J., 2020. Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. Carbohydr. Polym, 240, 116292,
Wang W., Flores R.A., and Huang C., 1995. Physical Properties of Two Biological Cushioning Materials from Wheat and Corn Starches. Cereal Chem., 72(1), 38-41.
Warburton S.C., Donald A.M., and Smith A.C., 1990. The deformation of brittle starch foams. J. Mater Sci., 25(9), 4001-4007,
Willett J.L. and Shogren R.L., 2002. Processing and properties of extruded starch/polymer foams. Polymer, 43(22), 5935-5947,
Wu G., Xie P., Yang H., Dang K., Xu Y., Sain M., Turng L.-S., and Yang W., 2021. A review of thermoplastic polymer foams for functional applications. J. Mater. Sci., 56(20), 11579-11604,
Xu Y.X., Dzenis Y., and Hanna M.A., 2005. Water solubility, thermal characteristics and biodegradability of extruded starch acetate foams. Ind. Crops. Prod., 21(3), 361-368,
Yang Z., Graiver D., and Narayan R., 2013. Extrusion of humidity-resistant starch foam sheets. Polym. Eng. Sci., 53(4), 857-867,
Yu L., Dean K., and Li L., 2006. Polymer blends and composites from renewable resources. Prog. Polym. Sci., 31(6), 576-602,
Yudanto Y.A. and Pudjihastuti I., 2020. Characterization of physical and mechanical properties of biodegradable foam from maize flour and paper waste for sustainable packaging material. Int. J. Eng. Appl. Sci. Technol., 5(8), 1-8,
Zhang J.-F. and Sun X., 2007a. Biodegradable foams of poly(lactic acid)/starch. I. Extrusion condition and cellular size distribution. J. Appl. Polym. Sci., 106(2), 857-862,
Zhang J.-F. and Sun X., 2007b. Biodegradable foams of poly(lactic acid)/starch. II. Cellular structure and water resistance: Biodegradable Foams of PLA/Starch. J. Appl. Polym. Sci., 106(5), 3058-3062,
Zhang X., Teng Z., and Huang R., 2020. Biodegradable starch/chitosan foam via microwave assisted preparation: morphology and performance properties. Polymers, 12(11), 2612,
Zhou J., Song J., and Parker R., 2006. Structure and properties of starch-based foams prepared by microwave heating from extruded pellets. Carbohydr. Polym, 63(4), 466-475,
Journals System - logo
Scroll to top