Effect of starch type and screw speed on mechanical properties of extrusion-cooked starch-based foams
More details
Hide details
Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
Acceptance date: 2018-12-18
Publication date: 2019-05-20
Int. Agrophys. 2019, 33(2): 233-240
Potato starch and corn starch are popular basic raw materials in the processing of biopolymers. One of the processing methods employed in the manufacture of biopolymers is extrusion-cooking technique. With specific parameters and equipment configurations, it is possible to obtain a wide variety of starch-based biopolymers. Loose fill foams are usually produced with the use of polystyrene, but the adverse environmental effects of conventional plastics provide an incentive for the development of new, environmentally friendly raw materials. The aim of the study was to apply the extrusion-cooking technique to prepare starch-based foams from potato starch and corn starch under various extruder screw speeds applied during processing. Process efficiency and energy consumption were also tested during processing. The expanded foams were analysed by means of cutting and compression tests to evaluate selected mechanical properties. The type of starch used and the processing screw speed had an impact on the efficiency and specific energy requirements of the process. The results showed that the screw speed had a significant effect on the cutting forces in the tested foams as well as on its compression properties. Higher hardness of foams was observed when potato starch was used as the basic raw material. Moreover, corn starch foams proved to be more elastic in compression tests.
Agbisit R., Alavi S., Cheng E., Herald T., and Trater A. 2007. Relationships between microstructure and mechanical properties of cellular cornstarch extrudates. J. Texture Studies, 38, 199-219.
Ayse A. and Mohini S., 2008. Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Composites Sci. Technol., 68, 557-565.
Carvalho A.J.F., Job A.E., Alves N., Curvelo A.A.S., and Gandini A., 2003. Thermoplastic starch/natural rubber blends. Carbohydrate Polymers, 53, 95-99.
Chocyk D., Gładyszewska B., Ciupak A., Oniszczuk T., Mościcki L., and Rejak A., 2015. Influence of water addition on mechanical properties of thermoplastic starch foils. International Agrophysics, 29(3), 267-275.
Combrzyński M., Mościcki L., Kwaśniewska A., Oniszczuk T., Wójtowicz A., Kręcisz M., Sołowiej B., Gładyszewska B., and Muszyński S., 2018a. Effect of PVA and PDE on selected structural characteristics of extrusion-cooked starch foams. Polimeros-Ciencia e Tecnologia, 28(1), 76-83.
Combrzyński M., Matysiak A., Wójtowicz A, Oniszczuk T., Kupryaniuk K., Żelizko K., Kuboń M., Mazurkiewicz J., and Mitrus M., 2018b. Effect of foaming agent addition on starch foam properties (in Polish). Przemysł Chemiczny, 97(5), 682-685.
Combrzyński M., Mościcki L., Kwaśniewska A., Oniszczuk T., Wójtowicz A., Sołowiej B., Gładyszewska B., and Muszyński S., 2017. Moisture sorption characteristics of extrusion-cooked starch protective loose-fill cushioning foams. Int. Agrophys., 31(4), 457-463.
Della Valle G., Boché Y., Colonna P., Vergnes B., 1995. The extrusion behaviour of potato starch, Carbohydrate Polymers, 28(3), 255-264.
Filli K., Sjöqvist M., Öhgren C., Stading M., and Rigdahl M., 2011. Development and characterization of extruded biodegradable foams based on zein and pearl millet flour. Annual Transactions Nordic Rheology Society, 19, 139-145.
Gładyszewska B., Oniszczuk T., Ciupak A., Chocyk D., Mościcki L., Rejak A., and Gładyszewski G., 2013. Effect of sweet water on some mechanical properties of biodegradable thermoplastic starch films (in Polish). Przemysł Chemiczny, 92(8), 1525-1527.
Griffin G.J.L., 1994. Starch polymer blends. Polymer Degradation and Stability, 45(2), 241-247.
İbanoğlu Ş., Ainsworth P., Özer E.A., and Plunkett A., 2006. Physical and sensory evaluation of a nutritionally balanced gluten-free extruded snack. J. Food Eng., 75, 469-472.
Jin Z., Hsiehl F., Huff H.E., 1995. Effects of soy fiber, salt, sugar and screw speed on physical properties and microstructure of corn meal extrudate. J. Cereal Sci., 22, 185-194.
Kręcisz M., Wójtowicz A., and Oniszczuk A., 2015. Effect of selected parameters on process efficiency and energy consumption during the extrusion-cooking of corn-rice instant grits. Agric. Agric. Sci. Procedia, 7, 139-145.
Mercier C., Linko P., Harper J.M., 1989. Extrusion cooking. American Association of Cereal Chemists, St. Paul, Minnesota, USA.
Mitrus M., 2012. Starch protective loose-fill foams. In: Thermoplastic Elastomers (Ed. A. El-Sonbati). InTech, Rijeka, Croatia, 79-94.
Mitrus M. and Moscicki L., 2014. Extrusion-cooking of starch protective loose-fill foams. Chemical Eng. Res. Design, 92, 778-783.
Mościcki L., Janssen L.P.B.M., Mitrus M., Oniszczuk T., Rejak A., and Juśko S., 2007. Baro-thermal techniques in processing of thermoplastic starch, Acta Agrophysica, 9(2), 431-442.
Mościcki L., Mitrus M., Wójtowicz A., Oniszczuk T., Rejak A., Janssen L., 2012. Application of extrusion-cooking for processing of thermoplastic starch (TPS). Food Research International, 47(2), 291-299.
Muszyński S., Kwaśniewska A., Oniszczuk T, Szymanek M., Tomczyk A., Leus A., and Gładyszewska B., 2017. Aging of biodegradable thermoplastic starch film under UV-irradiation (in Polish). Przemysł Chemiczny, 96(4), 891-893.
Muszyński S., Świetlicki M., Oniszczuk T., Kwaśniewska A, Świetlicka I, Arczewska M., Oniszczuk A., Bartnik G., Kornarzyński K., and Gładyszewska B., 2016. Effect of the surface structure of thermoplastic starch pellets on the kinetics of water vapor adsorption (in Polish). Przemysł Chemiczny, 95(4), 865-869.
Nabar Y., Narayan R., Schindler M., 2006. Twin-screw extrusion production and characterization of starch foam products for use in cushioning and insulation applications. Polymer Eng. Sci., 46(4), 438-451.
Oniszczuk T., Mitrus M., Wójtowicz A., and Mościcki L., 2015. Addition of bark in the production of the starch-based composites (in Polish). Przemysł Chemiczny, 94(10), 1748-1751.
Oniszczuk T., Pilawka R., and Oniszczuk A., 2013. Effect of powdered pine bark on thermal resistance of thermoplastic starch (in Polish). Przemysł Chemiczny, 8, 1554-1557.
Oniszczuk T. and Pilawka R., 2013. Effect of cellulose fibers on thermal strength of thermoplastic starch (in Polish). Przemysł Chemiczny, 92(2), 265-269.
Pushpadass H.A., Babu G.S., Weber R.W., Hanna M.A., 2008. Extrusion of starch-based loose-fill packaging foams: effect of temperature, moisture and talc on physical properties. Packaging Technol. Sci., 21, 171-183.
Rejak A., Wójtowicz A., and Oniszczuk T., 2013. Some properties of starchy films with poly(vinyl alcohol) and linen oil addition (in Polish). Przemysł Chemiczny, 92(11), 2022-2026.
Stasiak M., Molenda M., Bańda M., Wiącek J., Parafiniuk P., and Gondek E., 2017. Mechanical and combustion properties of sawdust-Straw pellets blended in different proportions. Fuel Proc. Technol., 156, 366-375.
Stasiak M., Molenda M., Opaliński I., and Błaszczak W., 2013. Mechanical properties of native corn, wheat and potato starches. Czech J. Food Sci., 31(4), 347-354.
Szyszlak-Barglowicz J., Slowik T., Zajac G., and Piekarski W., 2013. Inline plantation of Virginia mallow (Sida hermaphrodita R.) as biological acoustic screen. Rocznik Ochrona Środowiska, 15, 524-537.
Teixeira E., Dá Róz A., Carvalho A., and Curvelo A., 2007. The effect of glycerol/sugar/water and sugar/water mixtures on the plasticization of thermoplastic cassava starch. Carbohydrate Polymer, 69, 619-624.
Thomas D. and Atwell W., 1999. Starches, Eagan Press.
Wang L., Ganjyal G., Jones D., Weller C., and Hanna M., 2005. Modeling of bubble growth dynamics and nonisothermal expansion in starch-based foams during extrusion. Advances in Polymer Technol., 24(1), 29-45.
Willett J.L. and Shogren R.L., 2002. Processing and properties of extruded starch/polymer foams. Polymer, 43(22), 5935-5947.
Wójtowicz A., Mitrus M., Oniszczuk T., Mościcki L., Kręcisz M., Oniszczuk A., 2015. Selected physical properties, texture and sensory characteristics of extruded breakfast cereals based on wholegrain wheat flour. Agriculture and Agricultural Science Procedia, 7, 301-308.
Zhang J.-F. and Sun X., 2007. Biodegradable foams of poly(lactic acid)/starch. I. Extrusion condition and cellular size distribution. J. Appl. Polymer Sci., 106(2), 857-862.
Zhang M.Q., Rong M.Z., and Lu X., 2005. Fully biodegradable natural fiber composites from renewable resources: All-plant fiber composites. Composites Sci. Technol., 65, 2514-2525.
Zou W., Yu L., Liu X., and Chen L., 2012. Effects of amylose/ amylopectin ratio on starch-based superabsorbent polymers. Carbohydrate Polymers, 87, 1583-1588.
Journals System - logo
Scroll to top