Effect of extrusion-cooking conditions on the pasting properties of extruded white and red bean seeds
More details
Hide details
Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
Department of Machinery Exploitation and Production Process Management, University of Life Sciences in Lublin, Głęboka 28, 20-400 Lublin, Poland
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
Department of Agrobiotechnology, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland
Department of Physics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
Publication date: 2020-01-08
Acceptance date: 2019-06-05
Int. Agrophys. 2020, 34(1): 25–32
The extrusion-cooking technique may be used to convert the common bean into functional food products. There is still insufficient information on the properties of extruded beans. The aim of this work was to investigate the effect of extrusion-cooking conditions on the pasting properties of two cultivars of the common bean (Aura and Toska) available on the Polish market. The bean was extruded using a twin-screw extruder at variable screws speeds and different amounts of water were added directly to the barrel. The pasting properties of the obtained extrudates were measured using a Micro Visco-Amylo-Graph. The extruded beans revealed more stable viscosity characteristics than the unprocessed ones. The addition of increased amounts of water to the processed material raised the peak viscosity of both extruded bean varieties. A higher screws speed during bean processing resulted in a higher peak viscosity only in the case of the Aura cultivar. However, the decreasing value of the cold paste viscosity was observed at higher speeds. This may indicate the negative effect of the extruder’s screws speed on the gel formation ability of the extruded bean. The results showed that the extrusion-cooking process reduced the retrogradation tendency of bean paste due to starch degradation occurring during processing.
AACC International, 2011. Approved Methods of Analysis, 11th Ed., AACC International, St. Paul, MN, USA.
Ai Y., Cichy K.A., Harte J.B., Kelly J.D., and Ng P.K.W., 2016. Effect of extrusion cooking on the chemical composition and functional properties of dry common bean powders. Food Chem., 211, 538-545.
Bagherpour H., Minaei S., and Khoshtaghaza M.H., 2010. Selected physico-mechanical properties of lentil seed. Int. Agrophys., 24(1), 81-84.
Berrios J., De J., Morales P., Cámara M., and Sánchez-Mata M.C., 2010. Carbohydrate composition of raw and extruded pulse flours. Food Res. Int., 43, 531-536.
Blair M.W., 2013. Mineral biofortification strategies for food staples: the example of common bean. J. Agric. Food Chem., 61, 8287-8294.
Bouasla A., Wójtowicz A., and Zidoune M.N., 2017. Gluten-free precooked rice pasta enriched with legumes flours: physical properties, texture, sensory attributes and microstructure. LWT-Food Sci. Technol., 75, 569-577.
Bouasla A., Wójtowicz A., Zidoune M.N., Olech M., Nowak R., Mitrus M., and Oniszczuk A., 2016. Gluten-free precooked rice-yellow pea pasta: effect of extrusion-cooking conditions on phenolic acids composition, selected properties and microstructure. J. Food Sci., 81, C1070-C1079.
Chung H-J., Liu Q., Pauls K.P., Fan M.Z., and Yada R., 2008. In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Res. Int., 41, 869-875.
Day L. and Swanson B.G., 2013. Functionality of protein-fortified extrudates. Compr. Rev. Food Sci. F., 12, 546-564.
Guy R., 2001. Extrusion Cooking: Technology and Application. CRC Press, Cambridge, England.
Kiani Deh Kiani M., Minaei S., Maghsoudi H., and Ghasemi Varnamkhasti M., 2008. Moisture dependent physical properties of red bean (Phaseolus vulgaris L.) grains. Int. Agrophysics, 22(3), 231-237.
Kocira S., Kocira A., Kornas R., Koszel M., Szmigielski M., Krajewska M., Szparaga A., and Krzysiak Z., 2018a. Effects of seaweed extract on yield and protein content of two common bean (Phaseolus vulgaris L.) cultivars. Legume Res., 41(4), 589-593.
Kocira S., Szparaga A., Kocira A., Czerwińska E., Depo K., Erlichowska B., and Deszcz E., 2018b. Effect of applying a biostimulant containing seaweed and amino acids on the content of fiber fractions in three soybean cultivars. Legume Res.,
Kutoš T., Golob T., Kač M., and Plestenjak A., 2003. Dietary fibre content of dry and processed beans. Food Chem., 80, 231-235.
Lopes L.C.M., Batista K.A., Fernandes K.F., and Santiago R.A.C., 2012. Functional, biochemical and pasting properties of extruded bean (Phaseolus vulgaris L.) cotyledons. Int. J. Food Sci. Technol., 47, 1859-1865.
Marquezi M., Gervin V.M., Watanabe L.B., Bassinello P.Z., and Amante E.R., 2016. Physical and chemical properties of starch and flour from different common bean (Phaseolus vulgaris L.) cultivars. Brazilian J. Food Technol., 19.
Mercier C., Linko P., and Harper J.M., 1989. Extrusion Cooking. American Association of Cereal Chemists Inc., St. Paul, USA.
Mitrus M., Wójtowicz A., Oniszczuk T., Gondek E., and Mościcki L., 2017. Effect of processing conditions on microstructure and pasting properties of extrusion-cooked starches. Int. J. Food Eng., 13(6),
Moscicki L., 2011. Extrusion-Cooking Techniques. Application, Theory and Sustainability. Wiley-VCH, Weinheim, Germany.
Natabirwa H., Muyonga J.H., Nakimbugwa D., and Lungaho M., 2018. Physico-chemical properties and extrusion behaviour of selected common bean varieties. J. Sci. Food Agric., 98, 1492-1501.
Nkundabombi M.G. Nakimbugwa D., and Muyonga J.H., 2016. Effect of processing methods on nutritional, sensory, and physicochemical characteristics of biofortified bean flour. Food Sci. Nutr., 4, 384-397.
Osen R., Toelstede S., Wild F., Eisner P., and Schweiggert-Weisz U., 2014. High moisture extrusion cooking of pea protein isolates: raw material characteristics, extruder responses, and texture properties. J. Food Eng., 127, 67-74.
Piecyk M., Wołosiak R., Drużyńska B., and Worobiej E., 2012. Chemical composition and starch digestibility in flours from Polish processed legume seeds. Food Chem., 135, 1057-1064.
Rehman Z., Salariya A.M., and Zafar S.I., 2001. Effect of processing on available carbohydrate content and starch digestibility of kidney beans (Phaseolus vulgaris L.). Food Chem., 73, 351-355.
Rocha-Guzman N.E., Gallegos-Infante J.A., Gonzalez-Laredo R.F., Bello-Perez A., Delgado-Licon E., Ochoa-Martinez A., and Prado-Ortiz M.J., 2008. Physical properties of extruded products from three Mexican common beans (Phaseolus vulgaris L.) cultivars. Plant Food Hum. Nutr., 63, 99-104.
Siddiq M. and Uebersax M.A., 2013. Dry Beans and Pulses Production, Processing and Nutrition. Wiley-Blackwell, Iowa, USA.
Siddiq M., Kelkar S., Harte J.B., Dolan K.D., and Nyombaire G., 2013. Functional properties of flour from low-temperature extruded navy and pinto beans (Phaseolus vulgaris L.). LWT-Food Sci. Technol., 50, 215-219.
Siddiq M., Ravi R., Harte J.B., and Dolan K.D. 2010. Physical and functional characteristics of selected dry bean (Phaseolus vulgaris L.) flours. LWT-Food Sci. Technol., 43, 232-237.
Simmons C.W., Hall III C., Tulbek M., Mendis M., Heck T., and Oguneyemi S., 2015. Acceptability and characterization of extruded pinto, navy and black beans. J. Sci. Food Agric., 95, 2287-2291.
Trinidad T.P., Mallillin A.C., Loyola A.S., Sagum R.S., and Encabo R.R., 2010. The potential health benefits of legumes as a good source of dietary fibre. Br. J. Nutr., 103, 569-574.
Wang H. and Ratnayake W.S., 2014. Physicochemical and thermal properties of Phaseolus vulgaris L. var. Great Northern bean starch. J. Food Sci., 79, C295-C300.
Wójtowicz A., Oniszczuk A., Oniszczuk T., Kocira S., Wojtunik K., Mitrus M., Kocira A., Widelski J., and Skalicka-Woźniak K., 2017. Application of Moldavian dragonhead (Dracocephalum moldavica L.) leaves addition as a functional component of nutritionally valuable corn snacks. J. Food Sci. Technol., 54, 3218-3229.